Type system Value restriction Call-by-value semantics Semantical value restriction

A CALL-BY-VALUE REALIZABILITY MODEL
WITH EQUIVALENCE (AND SUBTYPING)

FOR PML

mm
um Ar
LABORATOIRE DE
MATHEMATIQUES

Logic and Semantics Seminar - Cambridge 26/02/2016

Rodolphe Lepigre - Université Savoie Mont Blanc



Type system Value restriction Call-by-value semantics Semantical value restriction

What does PML stands for?

Obviously, ML stands for ML.

We are not so sure about the P yet...

Some ideas:

- pedestrian,

perverted,

phantasmagoric,

pleasurable,

presumptuous,

Full list at http://adjectivesstarting.com/with-p/.



Type system Value restriction Call-by-value semantics Semantical value restriction

PML is a programming language

PML is similar to OCaml or SML:

- call-by-value evaluation,

ML-like polymorphism,

Curry-style syntax (no types in terms),

effects.

Example of program:

type rec nat = Zero | Succ of nat

val rec add n m =
match n with
| Zero ->m

| Succ nn -> Succ (add nn m)

1/ 25



Type system Value restriction Call-by-value semantics Semantical value restriction

PML is a proof system

The mechanism for program proving relies on:
- equational reasoning (equivalence of programs),

- dependent product type (TT-type).

The system follows the “program as proof” principle.

(As opposed to the “proof as program” principle.)

Ultimate goal: formalization of mathematics (untyped terms as objects).

2 /25



Type system Value restriction Call-by-value semantics Semantical value restriction

Why another proof system?

We want a programing language centered system:
- an efficient, convenient programming language (ML),
- in which properties of programs can be proved (occasionally),

- in the same (programming) language.
Proofs can be composed with programs (i.e. tactics).

Other systems:
- in Coq the proof-terms are hidden behind tactics,
- in Agda the syntax of proof-terms is limited,
- in HOL light, HOL, Isabelle/HOL there are no proof-terms,

- in Why3 proofs are not programs.

3/ 25



Value restriction Call-by-value semantics Semantical value restriction

PART 1

THE TYPE SYSTEM OF PML

4/ 25



Value restriction Call-by-value semantics Semantical value restriction

Starting point: ML

Three base types:

function type A = B,

product (record) type {l;: A;, ..., 1, : ALl

sum (variant) type [C;of A; | ... | C,of A ],

{} and [] are “unit” and the empty type.

Effects:
- syntax of the Ap-calculus (pect, [a]t),
- access to the evaluation context,

- future work: references.

Polymorphism (universal quantifier).
AxAy{fst = x;snd = y}: VX VY (X = Y — {fst: X; snd : Y})

5/ 25



Value restriction Call-by-value semantics Semantical value restriction

Terms as individuals

Equality types t = u and t # u:

interpreted with observational equivalence,

t and u are (possibly untyped) terms,

these types are equivalent to {} when the equivalence is true

and to [] when it is false.

First-order quantification:

Fr'-v:A a¢Fv(I) l'Ht:Va A
'Ev:Va A I'Ft:Ala:=u]

Example:
—:¥n (Succn # Zero).

6/ 25



Value restriction Call-by-value semantics Semantical value restriction

Working with equality

Automatic decision procedure for t = u:
- not decidable since (=) contains function extensionality,

- the term s< can be introduced when an equivalence can be derived.

l'Ft=u F'Ft#£u
lFe<:t=u lbe<:t#*u

Example:
Fadd Zerox = x

Fe<:addZerox =x x ¢ FV(Q)
Fe<: Vx (add Zerox = x)

7125



Value restriction Call-by-value semantics Semantical value restriction

Dependent product type

We want to be able to prove properties of typed terms.

The system includes a TT-type.

Ix:AFt:Bla:=x] FEt:M,.AB THFv:A
IFEAxt:TI,.,B I'Etv: Bla:=v]

Example:
x : N F add Zerox = x

x:NFe<:add Zerox = x
FAx s<:Tl,.y add Zeron = n

PML proof of TT,.y addn Zero = n:

Y ArAx case x of Zero — =< | Succy — 1y
8 /25



Type system Call-by-value semantics Semantical value restriction

Soundness issue

Care should be taken when combining:
- call-by-value evaluation,
- side-effects (references, control operators...),

- polymorphism.
The problem extends to the TT-type.

Some typing rules cannot be proved safe:

Fr't:A X¢&Fv() F=t:M,.AB THFHu:A
F'Ft: VXA I~tu: Bla:=u]

9/ 25



Type system Call-by-value semantics Semantical value restriction

Counter-example

If we extend a pure ML language with references:

val ref : 'a -> 'a ref
val (!) : 'a ref -> 'a
val (:=) : 'a ref -> 'a -> unit

The following program is accepted:
let r = ref [] in
r := [true];
42 + (List.hd !'r)

A more complex counter-example is required with control operators.

10 / 25



Type system Call-by-value semantics Semantical value restriction

Value restriction

The problem can be solved by restricting some rules to values:

r'v:A X§Z]L’V(l")vVallue F'-t:M,..B THFv:A
'Ev:VXA I'~tv:Bla:=v]

vvalue

Equivalently we may consider having two forms of judgements:
- 't : A where t is an arbitrary term (maybe a value),

- Tk v : A where v can only be a value.

The rules become the following.

Feyv:A  X¢gFvT) FEt:T,.AB Thyv:A
FEyv:VX A I'tv: Bla:=v]
Remark: we need an extra rule: M
Fr'Ev:A

11 / 25



Type system Call-by-value semantics Semantical value restriction

Is value restriction satisfactory?

We can cope with value restriction for polymorphism.

Value restriction is too restrictive on the TT-type.

F'Et:TMg.aB Ty v:iA
I'1tv:Bla:=v]

We cannot apply Ax s<: TT,.yadd Zeron = n to 2x21 (which is not a value).

We need to relax value restriction:

Mu=vEFt:T,.aB NMu=vkFu:A
Nu=vktu:Bla:=u]

Remark: we do not encode A = B using the TT-type.

12/ 25



Type system Value restriction Semantical value restriction

PART 2

A REALIZABILITY MODEL FOR PML

13 / 25



Type system Value restriction Semantical value restriction

Syntax and Krivine machine

Values, terms and stacks:

v,w = x| Axt | Clv] | {l; = vi}iel | o<
tyu z= alvitulpat|[rlt]v.l]casevof [Cix] — ti],
o= o | ver | [t]m

The state of the machine is a process t*7t.

14 [ 25



Type system Value restriction Semantical value restriction

Operational semantics

tuxm > ux[t]m
vx[t]m > t*xv-m
(Axt)xv-m > t[x « v]xm
poct*xm > tloa « mlxm
[lt*xp > txm
case C [v]of [Ci[x] — ti]iel*rc > t[x — v]xm
{Li=vi} ;. Lk > vixm

15 / 25



Type system Value restriction

Interpretation of types

Three levels of interpretation:
- raw semantics [A],
- falsity value [|A|l = {mt | Vv e [A], vxm € 1},
- truth value |A| = {t | Va e ||All, txm € 1L}

Here, 1 is a set of well-behaved processes.

L={txm|IveV, txm > vke}

Semantical value restriction

16 | 25



Type system Value restriction Semantical value restriction

Raw semantics

[A = B] = {Mt]|Vve[A] tlx:=v] € |B]|}
[ A ] = = v Ivien e [A)
H[CiOfAi]iGI]I = UiEI{Ci[V] | v e IIAL]]}
[Va Al = Nyep [Ala = t]]
[3a A] = Uycp [Ala = t]]

[t =u] = [} when t =u and [[]] = @ otherwise
[te Al = {velAllv =t}

Remark: the type T1,.,B is encoded as Va (a € A = B).

17 | 25



Type system Value restriction Semantical value restriction

Soundness

Theorem (Adequacy Lemma):
- if t is a term such that -t : A then t € |A],
- if v is a value such that k;v: A then v € [A].

Remark: [A] C |A| by definition.

Intuition: a typed program behaves well (in any well-typed evaluation context).

18 / 25



Semantical value restriction

Value restriction

Observational equivalence

Type system

Two programs are equivalent if they behave the same on every input.

We define the equivalence of t and u as:
V7t t*7 behaves well & w7 behaves well.

Required properties for the equivalence:
- extensionality (if v = w then t[x := v]
- if v e [A] and v = w then w € [A].

= t[x = w)),

Lv=wkt:Alx = v]

v]: A
whkt:Alx:

w]: A Iv=

Lv=whkt[x:
Nv=whkt]x:

Il
z

19 / 25



Type system Value restriction Semantical value restriction

Implementation of the decision procedure

We derive rules from the definition of (=):
(Axt)v = t[x == v],

{.l=v..)Jl=v,

Clv] # DIw] if C # D,

Pseudo-decision algorithm for equivalence:

- efficiency is critical (bottleneck in first implementation),

data structure: graph with maximal sharing (union find),

proof by contradiction,

we can only approximate equivalence,

the user can help by giving hints.

20/ 25



Type system Value restriction Call-by-value semantics

Relaxing value restriction

With value restriction, some rules are restricted to values.

Idea: a term that is equivalent to a value may be considered a value.

Informal proof:

NNt=vEt:A
NLt=vkv:A a¢FVT)
NMt=vEv:Va A
NMt=vEt:Va A

21/ 25



Type system Value restriction Call-by-value semantics

Semantical value restriction

In every realizability model [A] C |A].

This provides a semantical justification to the rule I;'EI—VQT
v

We need to have |A|NZ C [A] to obtain the rule ”—VAL
I 'ﬁl v:A

With this rule we can lift the value restriction to the semantics.

Nt=vEt:A_

Mt=vkEv:A

Nt=vikvA aéFV(F)v
F,tzvl;alv:VaAT ’
Nt=vkv:va A_
NMt=vkt:VaA

22 [ 25



Type system Value restriction Call-by-value semantics

The new instruction trick

The property |A| N 27" C [A] is not true in every realizability model.
To obtain it we extend the system with a new term constructor 9, ,,.
We will have 8, ,,x7 > vk if and only if v # w.

Idea of the proof:
- suppose v ¢ [A] and show v ¢ |A],
- we need to find 7 such that v¥7t € IL and Vw € [A],wxm € L,
- we can take 7 = [Ax d, ,]e,
- vx[Ax 0, Je > Ax dy ,kve > O, k¢,
- wk[Ax by yJe > Ax O, kw.e > O, ke > Wke.

23 [ 25



Type system Value restriction Call-by-value semantics

Stratified reduction and equivalence

Problem: the definitions of (>) and (=) are circular.
We need to rely on a stratified construction of the two relations
(=) = (>) U{(évyw*ﬂ,v*ﬂ) [3j<i,v# w}
(=) = {(t, u) | Vj<i,Vmrell, Vo, tO'*T[U]. & uc*nllj}

We then take
(=) =U ) ==NE=

ieN ieN

With these definitions, (=) is indeed extensional...

24 [ 25



Type system Value restriction Call-by-value semantics Semantical value restriction

Current and future work

Subtyping without coercions (almost finished):
- useful for programming (modules, classes...),
- provide injections between types for free,

- judgement HA C B interpreted as [A] C [B] in the semantics.

Recursion and (co-)inductive types (in progress):
- the types uX A and vX A will be handled by subtyping,
- we need to extend the language with a fixpoint,

- termination needs to be ensured to preserve soundness.

Theoretical investigation (for later):
- can we use 9, ,, to realize new formulas,

- how do we encode real maths in the system?

25 [ 25



Type system Value restriction Call-by-value semantics Semantical value restriction

THANK YOU!

HTTP://PATOLINE.ORG



	
	Type system
	Value restriction
	Call-by-value semantics
	Semantical value restriction


