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PROGRAM PROVING AND PROOF PROGRAMMING IN ML

type rec nat = [Z | S of nat]

val rec add : nat => nat => nat =
fun nm ->
match n with
Z -=>m
| S[n'] -> S[add n' m]
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PROGRAM PROVING AND PROOF PROGRAMMING IN ML

type rec nat = [Z | S of nat]

val rec add : nat => nat => nat =
fun nm ->
match n with
| Z =>m
| S[n'] -> S[add n' m]

val addZN : (n : nat) => (add Z n == n) =
fun n -> {}

val rec addNZ : (n : nat) => (add n Z == n) =

fun n ->
match n with
| Z -> {}

| S[n']1 -> addNZ n'
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AN HOMOGENEOUS LANGUAGE

Main features:
- call-by-value language with effects,
- extended type system for specification,

- proof as program (a single language).

Proofs can be composed as (and with) programs.
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DEPENDENT PRODUCT TYPE AND VALUE RESTRICTION

We would like to be able to write things like:

val p : (add (add Z Z) Z == add Z Z) = addNZ (add Z Z)
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DEPENDENT PRODUCT TYPE AND VALUE RESTRICTION

We would like to be able to write things like:

val p : (add (add Z Z) Z == add Z Z) = addNZ (add Z Z)

But the following typing rule is unsound without value restriction on u:

FEt:1M,.aB THu:A
I'Ftu: Bla:=u]

This breaks the compositionality of proofs and programs.
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ENCODING VALUE RESTRICTION

Use two forms of judgements: ' =t : A and T I v @ A.
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ENCODING VALUE RESTRICTION

Use two forms of judgements: ' =t : A and T I v @ A.

x:AFt:B
lNba Axt:A = B

1

Ax
x:Agx:A

'Ht:A =B Fl—u:A_)
'HFtu:B ’

One more rule is required.
NGav:A
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RESTRICTED TYPE CONSTRUCTORS

FEyv:A X§éFV(F)v Frt:vX A y
FEyv:vX A i IHt:A[X:=B]
F,x:AI—t:B[a::x]n_ IF'=t:T1,..B FIV—,aIV:An
Iy Axt:TT..B I'Etv:Bla:=v] ‘
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EQUIVALENCE AND SEMANTICAL VALUE RESTRICTION

With value restriction, some rules are restricted to values.

Idea: a term that is equivalent to a value may be considered a value.
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EQUIVALENCE AND SEMANTICAL VALUE RESTRICTION

With value restriction, some rules are restricted to values.

Idea: a term that is equivalent to a value may be considered a value.

Informal proof:

Nt=vEt:A
Nt=vkEv:A X¢gFV(T)
NMt=vEv:VXA
NMt=vEt: VXA
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DERIVING THE RELAXED RULES

NMt=vEt:A

NNt=vEv:A

Nt=vikyv:A X¢FV(F)V
Lt=viv:VXA ’
Lt=vEv:VXA_
Mt=vkt:VXA

—
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KRIVINE MACHINE

vV, W

t,u =

x| Axt
alv]tu

| v | [t]
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KRIVINE MACHINE

vV, W = x| Axt
t,u=alv|tu
o= o | ver | [t]m

tuxm > ux[t]m
vx[t]m > t*xv-m
(A t)xv-m > t[x « v]xm
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TYPES AND ORTHOGONALITY

Three levels of interpretation:

- raw semantics [A],

{{ti=v) I viel, v e [A]
Nocy [AIX = 0]]

[{}1 when t=u and @ otherwise

[[{]'i:Ai}id]] :
[VX A] :
[t =u]
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TYPES AND ORTHOGONALITY

Three levels of interpretation:
- raw semantics [A],
- falsity value [A]" = {n|Vve [A], vxm € 1},
- truth value I[A]]J'L ={t|Vme [[A]]L, txm e U}

[A = Bl = {Axt|Vve[A] tix =v] e [Bl}
A ] = {u=vi I viel, v e [A)
[VX Al = Ngcy [AIX = O]
[t =u] := [{}] when t =u and ¢ otherwise
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ADEQUACY LEMMA

Theorem (Adequacy Lemma):
- if t is a term such that t: A then t € [[A]]lL,
- if v is a value such that k;v: A then v € [A].

Intuition: a typed program behaves well (in any well-typed evaluation context).
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SEMANTICAL VALUE RESTRICTION

In every realizability model [A] C [[A]]LL.
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SEMANTICAL VALUE RESTRICTION

In every realizability model [A] C [[A]]LL.
I l;al v:A
T-v:A

I“FV:Al
T viA

This provides a semantical justification to the rule
We need to have [[A]]Ll N7 C [[A] to obtain the rule

With this rule we can derive relaxed typing rules.

NMt=vEt:A

NNt=vEv:A

NMt=vi;v:A XéPV(I")V
Lt=viv:VXA ’
Nt=vEv:VXA_
Mt=vkt:¥VXA

—
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THE NEW INSTRUCTION TRICK

The property [A]" N2 C [A] is not true in every realizability model.
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THE NEW INSTRUCTION TRICK

The property [A]" N2 C [A] is not true in every realizability model.

To obtain it we extend the system with a new term constructor 9, ,,.

We will have 8, ,,x7 > v*7 if and only if v # w.

Idea of the proof:

suppose v ¢ [A] and show v ¢ I[A]]li,

we need to find 7t such that vk ¢ 1 and Vw € [A],wxm € 1,
we can take T = [Ax 0, ,]e,

V[Ax 8y yJe > Ax O, ¥ v.e > b, ke,

W [Ax O, \Je > Ax &y kWi > 8, ¥E > We.

12 / 14



STRATIFIED REDUCTION AND EQUIVALENCE

Problem: the definitions of (>) and (=) are circular.
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STRATIFIED REDUCTION AND EQUIVALENCE

Problem: the definitions of (>) and (=) are circular.
We need to rely on a stratified construction of the two relations
(=) = (>) U{((SV’W*TC,V*TE) [ 3j<i,v# W}
(=) = {(t, u) | vj<i,vm, Vo, tO'*T[U]. & LLO‘*TCUj}

We then take
(=) =U ) (=) :.DN(Ei)

ieN
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CURRENT AND FUTURE WORK

Subtyping without coercions:
- useful for programming (modules, classes...),
- provide injections between types for free,
- interprets FA C B as [A] C [B] in the semantics.

Implementation (in progress):
- the types uX A and vX A will be handled by subtyping,

- we need to extend the language with a fixpoint,

- termination needs to be ensured to preserve soundness.

Theoretical investigation (for later):
- can we use 9, ,, to realize new formulas,

- how do we encode real maths in the system?
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