
The PMLi language:
Provwng Programs wn ML

Rodolphe Lepwgre - Sémwnawre Gallwum du 08/03/2018

Semantwcs and Implementatwon
of an Extenswon of ML for

Provwng Programs

Rodolphe Lepwgre, 18/07/2017

Supervwsed by Chrwstophe Raffallw, Pwerre Hyvernat and Karwm Nour (hdr)

A Programmwng Language, êwth Program Provwng Features

An ML-like programming language with:

records, variants (constructors), ,

polymorphism, ,

a call-by-value evaluation strategy,

efzects (control operators),

a Curry-style syntax (light) and .subtyping

general recursion

inductive types

2 / 34

A Programmwng Language, êwth Program Provwng Features

An ML-like programming language with:

records, variants (constructors), ,

polymorphism, ,

a call-by-value evaluation strategy,

efzects (control operators),

a Curry-style syntax (light) and .

For proving program, the type system is enriched with:

programs as individuals (higher-order layer),

an equality type t u v (observational equivalence),

a dependent zunction type (typed quanti{cation).

Termination checking is required zor proozs.

subtyping

general recursion

inductive types

2 / 34

A Programmwng Language, êwth Program Provwng Features

An ML-like programming language with:

records, variants (constructors), ,

polymorphism, ,

a call-by-value evaluation strategy,

efzects (control operators),

a Curry-style syntax (light) and .

For proving program, the type system is enriched with:

programs as individuals (higher-order layer),

an equality type t u v (observational equivalence),

a dependent zunction type (typed quanti{cation).

Termination checking is required zor proozs.

subtyping

general recursion

inductive types

2 / 34

Example of Program and Proof

type rec nat = [Zero ; S of nat]

val rec add : nat w nat w nat =

fun n m { case n { Zero x m | S[k] x S[add k m] } }

3 / 34

Example of Program and Proof

type rec nat = [Zero ; S of nat]

val rec add : nat w nat w nat =

fun n m { case n { Zero x m | S[k] x S[add k m] } }

val add_Zero_m : ymznat, add Zero m u m =

fun m { {} }

3 / 34

Example of Program and Proof

type rec nat = [Zero ; S of nat]

val rec add : nat w nat w nat =

fun n m { case n { Zero x m | S[k] x S[add k m] } }

val add_Zero_m : ymznat, add Zero m u m =

fun m { {} }

val rec add_n_Zero : ynznat, add n Zero u n =

fun n {

case n {

Zero x {}

S[p] x add_n_Zero p

}

}
3 / 34

Part III Specwfwcwtwes of the Type System

Part III Formalwsatwon of the System and Semantwcs

Part III Semantwcal Value Restrwctwon

4 / 34

Part I

Specwfwcwtwes of the Type System

5 / 34

Propertwes as Program Equwvalences

Examples oz (equational) program properties:

add (add m n) k u add m (add n k) (associativity oz add)

rev (rev l) u l (rev is an involution)

map g (map f l) u map (fun x {g (f x)}) l (map and composition)

sort (sort l) u sort l (sort is idempotent)

6 / 34

Propertwes as Program Equwvalences

Examples oz (equational) program properties:

add (add m n) k u add m (add n k) (associativity oz add)

rev (rev l) u l (rev is an involution)

map g (map f l) u map (fun x {g (f x)}) l (map and composition)

sort (sort l) u sort l (sort is idempotent)

Speci{cation oz a sorting zunction using predicates:

is_increasing (sort l) u true (sort produces a sorted list)

is_perm (sort l) l u true (sort yields a permutation)

6 / 34

Equalwty Types and Equwvalence

We consider a new type zormer t u v (where t and v are untyped programs).

7 / 34

Equalwty Types and Equwvalence

We consider a new type zormer t u v (where t and v are untyped programs).

It is interpreted as:

the unit type { iz t and v are |equivalent},

the empty type | otherwise.

7 / 34

Equalwty Types and Equwvalence

We consider a new type zormer t u v (where t and v are untyped programs).

It is interpreted as:

the unit type { iz t and v are |equivalent},

the empty type | otherwise.

dec. proc. says |yes}

} ; ~ � t : { ~ � v u v1 2

} ; ~ � t : v u v1 2

7 / 34

Equalwty Types and Equwvalence

We consider a new type zormer t u v (where t and v are untyped programs).

It is interpreted as:

the unit type { iz t and v are |equivalent},

the empty type | otherwise.

dec. proc. says |yes}

} ; ~ � t : { ~ � v u v1 2

} ; ~ � t : v u v1 2

}, � : {; ~ , v u v � t : C1 2

}, � : v u v ; ~ � t : C1 2

7 / 34

Equalwty Types and Equwvalence

We consider a new type zormer t u v (where t and v are untyped programs).

It is interpreted as:

the unit type { iz t and v are |equivalent},

the empty type | otherwise.

Remark: equivalence is undecidable.

dec. proc. says |yes}

} ; ~ � t : { ~ � v u v1 2

} ; ~ � t : v u v1 2

}, � : {; ~ , v u v � t : C1 2

}, � : v u v ; ~ � t : C1 2

7 / 34

Equalwty Types and Equwvalence

We consider a new type zormer t u v (where t and v are untyped programs).

It is interpreted as:

the unit type { iz t and v are |equivalent},

the empty type | otherwise.

Remark: equivalence is undecidable.

Remark: decision oz equivalence only needs to be correct.

dec. proc. says |yes}

} ; ~ � t : { ~ � v u v1 2

} ; ~ � t : v u v1 2

}, � : {; ~ , v u v � t : C1 2

}, � : v u v ; ~ � t : C1 2

7 / 34

Fwrst-Order Quantwfwcatwon ws not Enough

val rec add : nat w nat w nat =

fun n m { case n { Zero x m | S[k] x S[add k m] } }

8 / 34

Fwrst-Order Quantwfwcatwon ws not Enough

val rec add : nat w nat w nat =

fun n m { case n { Zero x m | S[k] x S[add k m] } }

val add_Zero_m : ym, add Zero m u m = {- ??? -}

8 / 34

Fwrst-Order Quantwfwcatwon ws not Enough

val rec add : nat w nat w nat =

fun n m { case n { Zero x m | S[k] x S[add k m] } }

val add_Zero_m : ym, add Zero m u m = {}

// Immediate by definition

8 / 34

Fwrst-Order Quantwfwcatwon ws not Enough

val rec add : nat w nat w nat =

fun n m { case n { Zero x m | S[k] x S[add k m] } }

val add_Zero_m : ym, add Zero m u m = {}

// Immediate by definition

val add_n_Zero : yn, add n Zero u n = {- ??? -}

8 / 34

Fwrst-Order Quantwfwcatwon ws not Enough

val rec add : nat w nat w nat =

fun n m { case n { Zero x m | S[k] x S[add k m] } }

val add_Zero_m : ym, add Zero m u m = {}

// Immediate by definition

val add_n_Zero : yn, add n Zero u n = {- ??? -}

// Nothing we can do

8 / 34

Fwrst-Order Quantwfwcatwon ws not Enough

val rec add : nat w nat w nat =

fun n m { case n { Zero x m | S[k] x S[add k m] } }

val add_Zero_m : ym, add Zero m u m = {}

// Immediate by definition

val add_n_Zero : yn, add n Zero u n = {- ??? -}

// Nothing we can do

We need a zorm oz typed quanti{cation!

8 / 34

Dependent Functwons for Typed Quantwfwcatwon

val rec add_n_Zero : ynznat, add n Zero u n =

fun n {

case n {

Zero x {}

S[p] x add_n_Zero p

}

}

9 / 34

Dependent Functwons for Typed Quantwfwcatwon

val rec add_n_Zero : ynznat, add n Zero u n =

fun n {

case n {

Zero x {}

S[p] x add_n_Zero p

}

}

Remark: we may inspect the elements oz the domain.

9 / 34

Dependent Functwons for Typed Quantwfwcatwon

val rec add_n_Zero : ynznat, add n Zero u n =

fun n {

case n {

Zero x {}

S[p] x add_n_Zero p

}

}

Remark: we may inspect the elements oz the domain.

}, � : A ; ~ � t : B
} ; ~ � ��.t : y�zA.B

9 / 34

Dependent Functwons for Typed Quantwfwcatwon

val rec add_n_Zero : ynznat, add n Zero u n =

fun n {

case n {

Zero x {}

S[p] x add_n_Zero p

}

}

Remark: we may inspect the elements oz the domain.

}, � : A ; ~ � t : B
} ; ~ � ��.t : y�zA.B

} ; ~ � t : y�zA.B } ; ~ � � : A
} ; ~ � t � : B[�� �]

9 / 34

Structurwng Proofs êwth Dummy Programs

val rec add_n_Sm : yn mznat, add n S[m] u S[add n m] =

fun n m {

case n { Zero x {} | S[k] x add_n_Sm k m }

}

val rec add_comm : yn mznat, add n m u add m n =

fun n m {

case n {

Zero x add_n_Zero m

S[k] x add_n_Sm m k; add_comm k m

}

}

10 / 34

Part II

Formalwsatwon of the System and Semantwcs

11 / 34

Realwzabwlwty Model

We build a model to prove that the language has the expected properties.

12 / 34

Realwzabwlwty Model

We build a model to prove that the language has the expected properties.

To construct the model, we need to:

1) give the syntax oz programs and types,

2) de{ne the interpretation oz types as sets oz terms (uses reduction),

3) de{ne adequate typing rules,

4) deduce termination, type safety and consistency.

12 / 34

Realwzabwlwty Model

We build a model to prove that the language has the expected properties.

To construct the model, we need to:

1) give the syntax oz programs and types,

2) de{ne the interpretation oz types as sets oz terms (uses reduction),

3) de{ne adequate typing rules,

4) deduce termination, type safety and consistency.

Advantage: it is modular (contrary to type preservation).

12 / 34

Call-by-Value Abstract Machwne

�� ��seulaV �,� =::]�[Ck��)�i=l i(
Izi

��t.����

���smreT v,t =:: t]�[�t.���])t ix]� i[Ci(
Izi

��[�lk.��v t��

���skcatS �,� =::)txetnocnoitaulave(�]t[��.�����

sessecorP q,p =:: ��t

13 / 34

Call-by-value Reductwon Relatwon

��v t � �]t[�v

�]t[�� � �.��t

�.��t.�� � ��]���[t

��lk.�)�i=l i(
Izi

� � ���k �Izk�

��])t ix]� i[Ci(
Izi

�]�[Ck[� ��]���k[tk �Izk�

��t.�� � ��]���[t

��t]�[� ��t

14 / 34

Successful Computatwon and Observatwonal Equwvalence

The abstract machine may either:

successzully compute a result (it converges),

zail with a runtime error or never terminate (it diverges).

15 / 34

Successful Computatwon and Observatwonal Equwvalence

The abstract machine may either:

successzully compute a result (it converges),

zail with a runtime error or never terminate (it diverges).

�Dewnition: we write t � � � ifz t � � � � � � zor some value � (t � � � otherwise).

15 / 34

Successful Computatwon and Observatwonal Equwvalence

The abstract machine may either:

successzully compute a result (it converges),

zail with a runtime error or never terminate (it diverges).

�Dewnition: we write t � � � ifz t � � � � � � zor some value � (t � � � otherwise).

(��.�) �� � �� (��.� �) (��.� �) � �� (��.t).l � ��1

15 / 34

Successful Computatwon and Observatwonal Equwvalence

The abstract machine may either:

successzully compute a result (it converges),

zail with a runtime error or never terminate (it diverges).

�Dewnition: we write t � � � ifz t � � � � � � zor some value � (t � � � otherwise).

(��.�) �� � �� (��.� �) (��.� �) � �� (��.t).l � ��1

Dewnition: two terms are equivalent iz they converge in the same contexts.

15 / 34

Successful Computatwon and Observatwonal Equwvalence

The abstract machine may either:

successzully compute a result (it converges),

zail with a runtime error or never terminate (it diverges).

�Dewnition: we write t � � � ifz t � � � � � � zor some value � (t � � � otherwise).

(��.�) �� � �� (��.� �) (��.� �) � �� (��.t).l � ��1

Dewnition: two terms are equivalent iz they converge in the same contexts.

� � � �� � 	
u = t , v � y � , t � � � � v � � � X��

15 / 34

Successful Computatwon and Observatwonal Equwvalence

The abstract machine may either:

successzully compute a result (it converges),

zail with a runtime error or never terminate (it diverges).

�Dewnition: we write t � � � ifz t � � � � � � zor some value � (t � � � otherwise).

(��.�) �� � �� (��.� �) (��.� �) � �� (��.t).l � ��1

Dewnition: two terms are equivalent iz they converge in the same contexts.

� � � �� � 	
u = t , v � y � , y� , t� � � � � v� � � � X��

15 / 34

Types as Sets of Canonwcal Values

� � � �Dewnition: a type A is interpreted as a set oz values A closed under u .

16 / 34

Types as Sets of Canonwcal Values

� � � �Dewnition: a type A is interpreted as a set oz values A closed under u .

��A2:l2;A1:l1�� = �
X	��
�A2�z�2
�A1�z�1���2=l2;�1=l1��

�]A2:C2�A1:C1[� = �
X	��
�Ai�z�

2,1	zi�]�[Ci�

�A.Xy� = �]��X[A��
epyt�

�A.X�� = �]��X[A��
epyt�

�A.�y� = �]t�a[A��
eulav�

�A.��� = �]t�a[A��
eulav�

16 / 34

Membershwp Types and Dependency

We consider a new membership type tzA (with t a term, A a type).

� � � �	
It is interpreted as tzA = � z A � t u � ,

and allows the introduction oz dependency.

17 / 34

Membershwp Types and Dependency

We consider a new membership type tzA (with t a term, A a type).

� � � �	
It is interpreted as tzA = � z A � t u � ,

and allows the introduction oz dependency.

The dependent zunction type y�zA.B

is de{ned as y�.(�zA w B),

this is a zorm oz relativised quantizcation scheme.

17 / 34

Semantwc Restrwctwon Type and Equalwtwes

We also consider a new restriction type A � P:

it is build using a type A and a |semantic predicate} P,

� � � � � �A � P is equal to A iz P is satis{ed and to | otherwise.

We can use predicates like t u v , ¬P or P
 Q.

18 / 34

Semantwc Restrwctwon Type and Equalwtwes

We also consider a new restriction type A � P:

it is build using a type A and a |semantic predicate} P,

� � � � � �A � P is equal to A iz P is satis{ed and to | otherwise.

We can use predicates like t u v , ¬P or P
 Q.

The equality type t u v is encoded as { � t u v .

18 / 34

Interpretatwon of the Functwon Type

� � � � � �	
A w B = ��.� � y � z A , �[�� �] z B

19 / 34

Interpretatwon of the Functwon Type

� � � � � �	
A w B = ��.� � y � z A , �[�� �] z B

What about �-abstractions which bodies are terms?

19 / 34

Interpretatwon of the Functwon Type

� � � � � �	
A w B = ��.� � y � z A , �[�� �] z B

What about �-abstractions which bodies are terms?

��� � � �We de{ne a completion operation A ­ A .

19 / 34

Interpretatwon of the Functwon Type

� � � � � �	
A w B = ��.� � y � z A , �[�� �] z B

What about �-abstractions which bodies are terms?

��� � � �We de{ne a completion operation A ­ A .

��� � � �The set A contains terms |behaving} as values oz A .

19 / 34

Interpretatwon of the Functwon Type

� � � � � �	
A w B = ��.� � y � z A , �[�� �] z B

What about �-abstractions which bodies are terms?

��� � � �We de{ne a completion operation A ­ A .

��� � � �The set A contains terms |behaving} as values oz A .

��� � � � � �	
Dewnition: we take A w B = ��.t � y � z A , t[�� �] z B .

19 / 34

Pole and Orthogonalwty

��� �The de{nition oz A is parametrised by a set oz processes � ® �×�.

20 / 34

Pole and Orthogonalwty

��� �The de{nition oz A is parametrised by a set oz processes � ® �×�.

We require that p z � and q � p implies q z �.

20 / 34

Pole and Orthogonalwty

��� �The de{nition oz A is parametrised by a set oz processes � ® �×�.

We require that p z � and q � p implies q z �.

Intuitively, � is a set oz processes that |behave well}.

20 / 34

Pole and Orthogonalwty

��� �The de{nition oz A is parametrised by a set oz processes � ® �×�.

We require that p z � and q � p implies q z �.

Intuitively, � is a set oz processes that |behave well}.

	
The set � = p � p� is a good choice.

20 / 34

Pole and Orthogonalwty

��� �The de{nition oz A is parametrised by a set oz processes � ® �×�.

We require that p z � and q � p implies q z �.

Intuitively, � is a set oz processes that |behave well}.

	
The set � = p � p� is a good choice.

�A� z
�z�w�u�
�z��� �®�	

�A� � =
�z���,�A�z�y��z�	

�A� �� =
�z��t,�A� �z�y��zt	

20 / 34

Value Restrwctwon and Typwng Judgments

Combining call-by-value and efzects leads to soundness issues (well-known).

21 / 34

Value Restrwctwon and Typwng Judgments

Combining call-by-value and efzects leads to soundness issues (well-known).

Usual solution: |value restriction} on some typing rules.

21 / 34

Value Restrwctwon and Typwng Judgments

Combining call-by-value and efzects leads to soundness issues (well-known).

Usual solution: |value restriction} on some typing rules.

This is encoded with two zorms judgments:

} ; ~ � � : A zor values only,val

} ; ~ � t : A zor terms (including values).

21 / 34

Value Restrwctwon and Typwng Judgments

Combining call-by-value and efzects leads to soundness issues (well-known).

Usual solution: |value restriction} on some typing rules.

This is encoded with two zorms judgments:

} ; ~ � � : A zor values only,val

} ; ~ � t : A zor terms (including values).

} ; ~ � � : Aval

} ; ~ � � : A

21 / 34

Value Restrwctwon and Typwng Judgments

Combining call-by-value and efzects leads to soundness issues (well-known).

Usual solution: |value restriction} on some typing rules.

This is encoded with two zorms judgments:

} ; ~ � � : A zor values only,val

} ; ~ � t : A zor terms (including values).

}, � : A ; ~ � � : Aval

}, � : A ; ~ � t : B
} ; ~ � ��.t : A w Bval

} ; ~ � � : Aval

} ; ~ � � : A
} ; ~ � t : A w B } ; ~ � v : A

} ; ~ � t v : B

21 / 34

Adequate Typwng Rule

Theorem (adequacy lemma):
��� �iz � t : A is derivable then t z A ,

� �iz � � : A is derivable then � z A .val

22 / 34

Adequate Typwng Rule

Theorem (adequacy lemma):
��� �iz � t : A is derivable then t z A ,

� �iz � � : A is derivable then � z A .val

Proof by induction on the typing derivation.

22 / 34

Adequate Typwng Rule

Theorem (adequacy lemma):
��� �iz � t : A is derivable then t z A ,

� �iz � � : A is derivable then � z A .val

Proof by induction on the typing derivation.

We only need to check that our typing rules are |correct}.

22 / 34

Adequate Typwng Rule

Theorem (adequacy lemma):
��� �iz � t : A is derivable then t z A ,

� �iz � � : A is derivable then � z A .val

Proof by induction on the typing derivation.

We only need to check that our typing rules are |correct}.

��� � : Aval � � � �For example is correct since A ® A .
� � : A

22 / 34

Adequacy of For All Introductwon

} ; ~ � � : Aval XØ}
} ; ~ � � : yX.Aval

23 / 34

Adequacy of For All Introductwon

X � � : Aval

� � : yX.Aval

23 / 34

Adequacy of For All Introductwon

X � � : Aval

� � : yX.Aval

� � � �We suppose � z A[X� �] zor all �, and show � z yX.A .

23 / 34

Adequacy of For All Introductwon

X � � : Aval

� � : yX.Aval

� � � �We suppose � z A[X� �] zor all �, and show � z yX.A .

� � � �This is immediate since yX.A = A[X� �] .��

23 / 34

Adequacy of For All Introductwon

X � � : Aval

� � : yX.Aval

� � � �We suppose � z A[X� �] zor all �, and show � z yX.A .

� � � �This is immediate since yX.A = A[X� �] .��

X � t : A
bad

�t : yX.A

23 / 34

Adequacy of For All Introductwon

X � � : Aval

� � : yX.Aval

� � � �We suppose � z A[X� �] zor all �, and show � z yX.A .

� � � �This is immediate since yX.A = A[X� �] .��

X � t : A
bad

�t : yX.A

�� ��� � � �We suppose t z A[X� �] zor all �, and show t z yX.A .

23 / 34

Adequacy of For All Introductwon

X � � : Aval

� � : yX.Aval

� � � �We suppose � z A[X� �] zor all �, and show � z yX.A .

� � � �This is immediate since yX.A = A[X� �] .��

X � t : A
bad

�t : yX.A

�� ��� � � �We suppose t z A[X� �] zor all �, and show t z yX.A .

���� ��� � � � � �� �However we have A[X� �] Ù yX.A = A[X� �] .� �� �

23 / 34

Propertwes of the System

Theorem (normalisation):

t : A implies t � � � � � � zor some value �.

24 / 34

Propertwes of the System

Theorem (normalisation):

t : A implies t � � � � � � zor some value �.

Theorem (safety for simple datatypes):

t : A implies t � � � � � � zor some value � : A .

24 / 34

Propertwes of the System

Theorem (normalisation):

t : A implies t � � � � � � zor some value �.

Theorem (safety for simple datatypes):

t : A implies t � � � � � � zor some value � : A .

Theorem (consistency):

there is no closed term t : |.

24 / 34

Part III

Semantwcal Value Restrwctwon

25 / 34

Derwved Rules for Dependent Functwons

��� : A � t : B a � � � t : yazA.B � � : Aval

� ��.t : yazA.B � t � : B[a� �]val

26 / 34

Derwved Rules for Dependent Functwons

��� : A � t : B a � � � t : yazA.B � � : Aval

� ��.t : yazA.B � t � : B[a� �]val

� t : yazA.B � � : AvalDez zi
� t : ya.(azA w B) � � : �zAvaly �e

� t : �zA w B[a� �] � � : �zA
we

� t � : B[a� �]

26 / 34

Derwved Rules for Dependent Functwons

��� : A � t : B a � � � t : yazA.B � � : Aval

� ��.t : yazA.B � t � : B[a� �]val

� t : yazA.B � � : AvalDez zi
� t : ya.(azA w B) � � : �zAvaly �e

� t : �zA w B[a� �] � � : �zA
we

� t � : B[a� �]

Value restriction breaks the compositionality oz dependent zunctions.

// add_n_Zero : ynznat, add n Zero u n

add_n_Zero (add Zero S[Zero]) : add (add Zero S[Zero]) Zero u add Zero S[Zero]

26 / 34

Semantwcal Value Restrwctwon

� t : yazA.B � � : A � t : yazA.B � v : A � v u �valWe replace by .
� t � : B[a� �] � t v : B[a� v]

27 / 34

Semantwcal Value Restrwctwon

� t : yazA.B � � : A � t : yazA.B � v : A � v u �valWe replace by .
� t � : B[a� �] � t v : B[a� v]

� � : A � t : A � t u �valThis requires changing into .
� � : �zA � t : tzAval

27 / 34

Semantwcal Value Restrwctwon

� t : yazA.B � � : A � t : yazA.B � v : A � v u �valWe replace by .
� t � : B[a� �] � t v : B[a� v]

� � : A � t : A � t u �valThis requires changing into .
� � : �zA � t : tzAval

Can this rule be derived in the system?

27 / 34

Semantwcal Value Restrwctwon

� t : yazA.B � � : A � t : yazA.B � v : A � v u �valWe replace by .
� t � : B[a� �] � t v : B[a� v]

� � : A � t : A � t u �valThis requires changing into .
� � : �zA � t : tzAval

Can this rule be derived in the system?

� t : A � t u �
u

� � : A
� � : Aval zi

� � : �zAval �
� � : �zA � t u �

u
� t : tzA

27 / 34

Bworthogonal Completwon Closed for Values

� � : A
Everything goes down to having a rule .

� � : Aval

28 / 34

Bworthogonal Completwon Closed for Values

� � : A
Everything goes down to having a rule .

� � : Aval

� � : AvalIt should not be conzused with .
� � : A

28 / 34

Bworthogonal Completwon Closed for Values

� � : A
Everything goes down to having a rule .

� � : Aval

� � : AvalIt should not be conzused with .
� � : A

��� � � �Semantically, this requires that � z A implies � z A .

28 / 34

Bworthogonal Completwon Closed for Values

� � : A
Everything goes down to having a rule .

� � : Aval

� � : AvalIt should not be conzused with .
� � : A

��� � � �Semantically, this requires that � z A implies � z A .

The biorthogonal completion should not introduce new values.

28 / 34

Bworthogonal Completwon Closed for Values

� � : A
Everything goes down to having a rule .

� � : Aval

� � : AvalIt should not be conzused with .
� � : A

��� � � �Semantically, this requires that � z A implies � z A .

The biorthogonal completion should not introduce new values.

The rule seems reasonable, but it is hard to justizy semantically.

28 / 34

The Neê Instructwon Trwck

��� � � �We do not have � z A implies � z A in every reali~ability model.

29 / 34

The Neê Instructwon Trwck

��� � � �We do not have � Ø A implies � Ø A in every reali~ability model.

29 / 34

The Neê Instructwon Trwck

��� � � �We do not have � Ø A implies � Ø A in every reali~ability model.

We extend the system with a new term constructor Ú such that�,�

Ú � � � � � � ifz � Û �.�,�

29 / 34

The Neê Instructwon Trwck

��� � � �We do not have � Ø A implies � Ø A in every reali~ability model.

We extend the system with a new term constructor Ú such that�,�

Ú � � � � � � ifz � Û �.�,�

	
Idea oz the prooz with � = p � p� :

29 / 34

The Neê Instructwon Trwck

��� � � �We do not have � Ø A implies � Ø A in every reali~ability model.

We extend the system with a new term constructor Ú such that�,�

Ú � � � � � � ifz � Û �.�,�

	
Idea oz the prooz with � = p � p� :
��� � � �We assume � Ø A and show � Ø A .

29 / 34

The Neê Instructwon Trwck

��� � � �We do not have � Ø A implies � Ø A in every reali~ability model.

We extend the system with a new term constructor Ú such that�,�

Ú � � � � � � ifz � Û �.�,�

	
Idea oz the prooz with � = p � p� :
��� � � �We assume � Ø A and show � Ø A .

�� �We need to {nd � z A such that � � � �.

29 / 34

The Neê Instructwon Trwck

��� � � �We do not have � Ø A implies � Ø A in every reali~ability model.

We extend the system with a new term constructor Ú such that�,�

Ú � � � � � � ifz � Û �.�,�

	
Idea oz the prooz with � = p � p� :
��� � � �We assume � Ø A and show � Ø A .

�� �We need to {nd � z A such that � � � �.

� �We need to {nd � such that � � � � and y � z A , � � � �.

29 / 34

The Neê Instructwon Trwck

��� � � �We do not have � Ø A implies � Ø A in every reali~ability model.

We extend the system with a new term constructor Ú such that�,�

Ú � � � � � � ifz � Û �.�,�

	
Idea oz the prooz with � = p � p� :
��� � � �We assume � Ø A and show � Ø A .

�� �We need to {nd � z A such that � � � �.

� �We need to {nd � such that � � � � and y � z A , � � � �.

We can take � = [��.Ú]�.�,�

29 / 34

The Neê Instructwon Trwck

��� � � �We do not have � Ø A implies � Ø A in every reali~ability model.

We extend the system with a new term constructor Ú such that�,�

Ú � � � � � � ifz � Û �.�,�

	
Idea oz the prooz with � = p � p� :
��� � � �We assume � Ø A and show � Ø A .

�� �We need to {nd � z A such that � � � �.

� �We need to {nd � such that � � � � and y � z A , � � � �.

We can take � = [��.Ú]�.�,�

� � [��.Ú]� � ��.Ú � � . � � Ú � ���,� �,� �,�

29 / 34

The Neê Instructwon Trwck

��� � � �We do not have � Ø A implies � Ø A in every reali~ability model.

We extend the system with a new term constructor Ú such that�,�

Ú � � � � � � ifz � Û �.�,�

	
Idea oz the prooz with � = p � p� :
��� � � �We assume � Ø A and show � Ø A .

�� �We need to {nd � z A such that � � � �.

� �We need to {nd � such that � � � � and y � z A , � � � �.

We can take � = [��.Ú]�.�,�

� � [��.Ú]� � ��.Ú � � . � � Ú � ���,� �,� �,�

� �� � [��.Ú]� � ��.Ú � � . � � Ú � � � � � �� iz � z A�,� �,� �,�

29 / 34

Well-defwned constructwon of equwvalence and reductwon

� � � �Problem: the de{nitions oz � and u are circular.

30 / 34

Well-defwned constructwon of equwvalence and reductwon

� � � �Problem: the de{nitions oz � and u are circular.

We need to rely on a strati{ed construction oz the two relations.

� � � � � �� �� = � Ü Ú �� , � � � � � j < i , � Û �i �,� j

� � � �� �u = t , v � y jÝ i , y � , yÞ, tÞ ��� � vÞ�� �i j j

We then take

� � � � � � � �� = � and u = u .i� i�
i z� i z�

30 / 34

Concluswon

31 / 34

Thwngs That I dwd not Shoê

1) Syntax directed typing and subtyping rules using:

local subtyping judgments oz the zorm t z A ß B,

choice operators like � (t Ø B) or � (t Ø A),�zA X

an encoding oz |neutral terms} into reduction.

2) Inductive types, coinductive types and recursion (more recent) using:

circular typing and subtyping proozs,

well-zoundedness established using the si{e change principle.

3) Unreachable code and rezutation oz patterns.

32 / 34

Future Work

Practical issues (work in progress):

Composing programs that are proved terminating.

Extensible records and variant types (inzerence).

Toward a practical language:

Compiler using typing inzormations zor optimisations.

Built-in types (int64, �oat) with their speci{cation.

Theoretical questions:

Can we handle more side-efzects? (mutable cells, arrays)

What can we realise with (variations oz) Ú ?�,�

Can we extend the system with quotient types?

Can we zormalise mathematics in the system?

33 / 34

References for Technwcal Detawls

A Classical Reali{ability Model for a Semantical Value Restriction

R. Lepigre (ESOP 2016)

https://lepigre.zr/{les/docs/lepigre2016_svr.pdz

Practical Subtyping for System F with Si{ed (Co-)Induction

R. Lepigre and C. Rafzalli (submitted in 2017)

https://lepigre.zr/{les/docs/lepigre2017_subml.pdz

Semantics and Implementation of an Extension of ML for Proving Programs

R. Lepigre, PhD manuscript

https://github.com/rlepigre/phd/

34 / 34

Thanks!

