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A PROGRAMMING LANGUAGE, WITH PROGRAM PROVING FEATURES

An ML-like programming language with:

records, variants (constructors), inductive types,
polymorphism, general recursion,

a call-by-value evaluation strategy,

effects (control operators),

a Curry-style syntax (light) and subtyping.
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EXAMPLE OF PROGRAM AND PROOF

type rec nat = [Zero ; S of nat]
val rec add : nat = nat = nat =

fun nm { case n { Zero — m | S[k] — S[add k m] } }
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EXAMPLE OF PROGRAM AND PROOF

type rec nat = [Zero ; S of nat]
val rec add : nat = nat = nat =

fun nm { case n { Zero — m | S[k] — S[add k m] } }

val add_Zero_m : Vmenat, add Zerom = m =

funm { {} }

val rec add n Zero : Vnenat, add n Zero = n =
fun n {
case n {
Zero — {}

S[p] — add n Zero p
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PART I

SPECIFICITIES OF THE TYPE SYSTEM
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PROPERTIES AS PROGRAM EQUIVALENCES

Examples of (equational) program properties:
add (add mn) k = add m (add n k)

rev(revl) =1

- mapg (map f1l) = map (funx {g (fx)}) 1

sort (sort 1) = sortl

(associativity of add)
(rev is an involution)
(map and composition)

(sort is idempotent)
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PROPERTIES AS PROGRAM EQUIVALENCES

Examples of (equational) program properties:
add (add mn) k = add m (add n k)

rev(revl) =1

- mapg (map f1l) = map (funx {g (fx)}) 1

sort (sort 1) = sortl

Specification of a sorting function using predicates:

- 1is_increasing (sort 1) = true

- is perm (sort 1) 1 = true

(associativity of add)
(rev is an involution)
(map and composition)

(sort is idempotent)

(sort produces a sorted list)

(sort yields a permutation)
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EQuALITY TYPES AND EQUIVALENCE

We consider a new type former t =u (where t and u are untyped programs).
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EQuALITY TYPES AND EQUIVALENCE

We consider a new type former t =u (where t and u are untyped programs).

It is interpreted as:
- the unit type T if t and u are “equivalent”,

- the empty type | otherwise.

dec. proc. says “yes”
2T TR =, x:T;Z,uyu=u,Ht:C
STHEt:uy =, Mx:uw=u,; = Ht:C

Remark: equivalence is undecidable.

Remark: decision of equivalence only needs to be correct.
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FIRST-ORDER QUANTIFICATION IS NOT ENOUGH

val rec add : nat = nat = nat =

fun nm { case n { Zero — m | S[k] — S[add k m] } }
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FIRST-ORDER QUANTIFICATION IS NOT ENOUGH

val rec add : nat = nat = nat =

fun nm { case n { Zero - m | S[k] — S[add k m] } }

val add Zero m : vm, add Zerom = m = {}
// Immediate by definition
val add n Zero : vn, add n Zero = n = {- ??? -}

// Nothing we can do

We need a form of typed quantification!
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DEPENDENT FUNCTIONS FOR TYPED QUANTIFICATION

val rec add n_Zero : Vnenat, add n Zero = n =

fun n {
case n {
Zero — {}

S[p]l — add n _Zero p
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DEPENDENT FUNCTIONS FOR TYPED QUANTIFICATION

val rec add n_Zero : Vnenat, add n Zero = n =

fun n {
case n {
Zero — {}

S[p]l — add n _Zero p

Remark: we may inspect the elements of the domain.

zZkFt:vxeAB T;,ZFv:A

I =ZkFtv:Bx:=v]

Ix:A;ZFt:B
I 2 F Ax.t:VxeA.B
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STRUCTURING PROOFS WITH DUMMY PROGRAMS

val rec add n Sm : Vvn menat, add n S[m] = S[add n m] =

fun n m {

case n { Zero —» {} | S[k] — add_n_Sm k m }

}
val rec add comm : Vn menat, add nm = add m n =
fun n m {
case n {
Zero — add n Zero m
S[k] — add n Sm m k; add _comm k m
}
}
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PART II

FORMALISATION OF THE SYSTEM AND SEMANTICS
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REALIZABILITY MODEL

We build a model to prove that the language has the expected properties.
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REALIZABILITY MODEL

We build a model to prove that the language has the expected properties.

To construct the model, we need to:

1) give the syntax of programs and types,

2) define the interpretation of types as sets of terms (uses reduction),
3) define adequate typing rules,

4) deduce termination, type safety and consistency.

Advantage: it is modular (contrary to type preservation).
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Values (A))

Terms (A)

Stacks (1)

Processes

CALL-BY-VALUE ABSTRACT MACHINE

v, W i= x| Ax.t | {(112Vi)i61} | Cylv]

tyu s=vitu| vl | V] (Cilxy ﬁti)iel] | poet | [t
m, & = ole|v.m| [t (evaluation context)
Pyq = txm
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CALL-BY-VALUE REDUCTION RELATION

{(l’i:vi)iel}']’k* T > Vk* U (k € I)

I*7 > t[x=vi*m (kel)

£}
o
*
ipal
Y
-
*
A

14 / 34



SUCCESSFUL COMPUTATION AND OBSERVATIONAL EQUIVALENCE

The abstract machine may either:
- successfully compute a result (it converges),

- fail with a runtime error or never terminate (it diverges).
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The abstract machine may either:
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- fail with a runtime error or never terminate (it diverges).

Definition: we write t x 7t |} iff t % 7t >* v x ¢ for some value v (t * 7t | otherwise).

(Ax.x) {}x¢el (Ax.x x) (Axx x)*xef (Ax.t).lyxe

Definition: two terms are equivalent if they converge in the same contexts.

(=) = {6, wIvn Ve, tpxnll & upxmlf
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TYPES AS SETS OF CANONICAL VALUES

Definition: a type A is interpreted as a set of values [A] closed under (=).
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TYPES AS SETS OF CANONICAL VALUES

Definition: a type A is interpreted as a set of values [A] closed under (=).

AL A = [L=visb=vi} [ v € [AT A v € [A]]
[IC: A G AJD = G 1 iefl, 2} A velAd]

[VX.A] = @Qpe[[A[X = 0]

[3X.A] = @LJPEI[A[X = O]

[vx.A] = () [Ala=t]]

v value

[3x.A] = U [Ala:=t]]

v value
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MEMBERSHIP TYPES AND DEPENDENCY

We consider a new membership type t€A (with t a term, A a type).
- It is interpreted as [teA] = {v € [A] | t = v},

- and allows the introduction of dependency.
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MEMBERSHIP TYPES AND DEPENDENCY

We consider a new membership type t€A (with t a term, A a type).

- It is interpreted as [teA] = {v € [A] | t = v},

- and allows the introduction of dependency.

The dependent function type Vx€A.B
- is defined as Vx.(x€A = B),

- this is a form of relativised quantification scheme.
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SEMANTIC RESTRICTION TYPE AND EQUALITIES

We also consider a new restriction type A [ P:
- it is build using a type A and a “semantic predicate” P,
- [ATP] is equal to [A] if P is satisfied and to [_L] otherwise.

- We can use predicates like t = u, =P or P A Q.
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SEMANTIC RESTRICTION TYPE AND EQUALITIES

We also consider a new restriction type A [ P:

- it is build using a type A and a “semantic predicate” P,

- [ATP] is equal to [A] if P is satisfied and to [_L] otherwise.

- We can use predicates like t = u, =P or P A Q.

The equality type t = u is encoded as T [ t =u.
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INTERPRETATION OF THE FUNCTION TYPE

[A = B] = {Ax.w | Vve[Al,wlx:=v] € [B]}
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INTERPRETATION OF THE FUNCTION TYPE

[A = B] = {Ax.w | Vve[Al,wlx:=v] € [B]}

What about A-abstractions which bodies are terms?

We define a completion operation [A] +— AT

The set [A]"" contains terms “behaving” as values of [A].

Definition: we take [A = B] = {Ax.t | Vv e [A], tlx:=v] € [B]""}.

19 / 34



POLE AND ORTHOGONALITY

The definition of [A]"" is parametrised by a set of processes 1L C AxIT.
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POLE AND ORTHOGONALITY

The definition of [A]"" is parametrised by a set of processes 1L C AxIT.
We require that p € I and q > p implies q € L.
Intuitively, 1 is a set of processes that “behave well”.
The set 1L = {p | pl} is a good choice.
[A] € {dPCA |vedDAVv=w = we D)

[A]Y = {meTl|VvelAl,vxmn e 1}

[AT™ = {te A|Vre[A]lY tsxme 1}
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VALUE RESTRICTION AND TYPING JUDGMENTS

Combining call-by-value and effects leads to soundness issues (well-known).
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VALUE RESTRICTION AND TYPING JUDGMENTS

Combining call-by-value and effects leads to soundness issues (well-known)
Usual solution: “value restriction” on some typing rules

This is encoded with two forms judgments:
- =

K. v : A for values only,
-T;

[

1t : A for terms (including values).

M ZRyv:A NzFt:A=B TI;ZFu:A

MNzZkFv:A MZFtu:B
Nx:A;ZFHt:B

Tx:A; 2 hkygx: A

N ZkyiAxt:A=B
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ADEQUATE TYPING RULE

Theorem (adequacy lemma):
- if Ft:A is derivable then t € [A]",
- if k,; v : A is derivable then v € [A].
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ADEQUATE TYPING RULE

Theorem (adequacy lemma):
- if Ft:A is derivable then t € [A]",
- if k,; v : A is derivable then v € [A].

Proof by induction on the typing derivation.

We only need to check that our typing rules are “correct”.

KaVv:A

- is correct since [A] C [A]"™"
v

For example
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ADEQUACY OF FOR ALL INTRODUCTION

I ZRkav:A

) Xgr
I Zhkgv: VXA
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ADEQUACY OF FOR ALL INTRODUCTION

XEgVv:A
EaVv:VX.A

We suppose v € [A[X = ®]] for all d, and show v € [VX.A].

This is immediate since [VX.A] = N, [AX:= ®]].

XkEt: A
Ft: VXA

We suppose t € [A[X:= ®]]* for all &, and show t € [VX.AJ™

However we have M, [AX = O]]** € [¥X.AT™ = (ng [AX:= ®]]) .
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PROPERTIES OF THE SYSTEM

Theorem (normalisation):

t: A implies t * ¢ > v x ¢ for some value v.
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PROPERTIES OF THE SYSTEM

Theorem (normalisation):

t: A implies t * ¢ > v x ¢ for some value v.

Theorem (safety for simple datatypes):

t: A implies t * ¢ > v x ¢ for some value v : A.

Theorem (consistency):

there is no closed term t: L.

24 [ 34



PART III

SEMANTICAL VALUE RESTRICTION
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DERIVED RULES FOR DEPENDENT FUNCTIONS

x:AFt:Bla:=x] Ft:VaeAB kKyv:A

Ka Ax.t: Va€eA.B Ftv:Bla:=vV]
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DERIVED RULES FOR DEPENDENT FUNCTIONS

x:AFt:Bla:=x] Ft:VaeAB kKyv:A
Ka Ax.t : Vac€A.B Ftv:Bla:=v]

Ft:VacA.B Def FaVv:A .
Ft:Va.(aeA = B) “ g V:iveA
Ft:veA = Bla=v] I—v:ve/\é

Ftv:Bla=v] ’

Value restriction breaks the compositionality of dependent functions.

// add n Zero : Vvnenat, add n Zero = n

add n Zero (add Zero S[Zero]) : add (add Zero S[Zero]l) Zero = add Zero S[Zero]
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SEMANTICAL VALUE RESTRICTION

Ft:VaeAB K ;Vv:A by Ft:VaeAB Fu:A Fu=wv

We replace
Ftv:Bla:=v] Ftu:Bla:=1u]
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SEMANTICAL VALUE RESTRICTION

Ft:VaeAB K ;v:A Ft:VaeAB Fu:A Fu=wv

We replace by
l_tV:B[a::\)] l_tuB[a.:uJ
This requires changing —@ YA o FtiA Ft=v
RaVv:veEA Ft:teA

Can this rule be derived in the system?

Ft:A Ft=v_

Fv:A
EgVv:iA .
I;alv:veAT'
Fv:veA Ft=v_
Ft:tcA -
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BIORTHOGONAL COMPLETION CLOSED FOR VALUES

Fv:A

Everything goes down to having a rule ————.
RaVv:A
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BIORTHOGONAL COMPLETION CLOSED FOR VALUES

Everything goes down to having a rule H—A
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WELL-DEFINED CONSTRUCTION OF EQUIVALENCE AND REDUCTION

Problem: the definitions of (>) and (=) are circular.
We need to rely on a stratified construction of the two relations.
(=) = (MU {(évyw*ﬂ,v*ﬂ) | 3j<i,v §éj w}
=) = {(t, u) | Vj<i,vn,Vo, tc*nllj & uc*nﬂj}

We then take
=) = U and = = NE).

ieN ieN
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CONCLUSION
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THINGS THAT I DID NOT SHOW

1) Syntax directed typing and subtyping rules using:
- local subtyping judgments of the form t € A C B,
- choice operators like €,.5(t € B) or ex(t € A),

- an encoding of “neutral terms” into reduction.

2) Inductive types, coinductive types and recursion (more recent) using:

- circular typing and subtyping proofs,

- well-foundedness established using the size change principle.

3) Unreachable code and refutation of patterns.
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FUTURE WORK

Practical issues (work in progress):
- Composing programs that are proved terminating.

- Extensible records and variant types (inference).

Toward a practical language:
- Compiler using typing informations for optimisations.

- Built-in types (int64, float) with their specification.

Theoretical questions:
- Can we handle more side-effects? (mutable cells, arrays)
- What can we realise with (variations of) 9,,,?
- Can we extend the system with quotient types?

- Can we formalise mathematics in the system?
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