THE PML, LANGUAGE:

PROVING PROGRAMS IN ML

(sv

(r27/72 - DEDUCH
INVENTEURS DL MONDE NUMERIQUE I— EAM

RODOLPHE LEPIGRE - SEMINAIRE GALLIUM DU 08/03/2018

SEMANTICS AND IMPLEMENTATION
OF AN EXTENSION OF ML FOR
PROVING PROGRAMS

&:' UNIVERSITE
SAVOIE
MONT BLANC

RODOLPHE LEPIGRE, 18/07/2017

SUPERVISED BY CHRISTOPHE RAFFALLI, PIERRE HYVERNAT AND KARIM NOUR (HDR)

A PROGRAMMING LANGUAGE, WITH PROGRAM PROVING FEATURES

An ML-like programming language with:

records, variants (constructors), inductive types,
polymorphism, general recursion,

a call-by-value evaluation strategy,

effects (control operators),

a Curry-style syntax (light) and subtyping.

2/ 34

A PROGRAMMING LANGUAGE, WITH PROGRAM PROVING FEATURES

An ML-like programming language with:

records, variants (constructors), inductive types,

polymorphism, general recursion,

a call-by-value evaluation strategy,

effects (control operators),

a Curry-style syntax (light) and subtyping.

For proving program, the type system is enriched with:

programs as individuals (higher-order layer),

an equality type t = u (observational equivalence),

a dependent function type (typed quantification).

Termination checking is required for proofs.

2/ 34

A PROGRAMMING LANGUAGE, WITH PROGRAM PROVING FEATURES

An ML-like programming language with:

records, variants (constructors),)

polymorphism, ,

a call-by-value evaluation strategy,

effects (control operators),

a Curry-style syntax (light) and

For proving program, the type system is enriched with:

programs as individuals (higher-order layer),

an equality type t = u (observational equivalence),

a dependent function type (typed quantification).

2/ 34

EXAMPLE OF PROGRAM AND PROOF

type rec nat = [Zero ; S of nat]
val rec add : nat = nat = nat =

fun nm { case n { Zero — m | S[k] — S[add k m] } }

3/34

EXAMPLE OF PROGRAM AND PROOF

type rec nat = [Zero ; S of nat]
val rec add : nat = nat = nat =

fun nm { case n { Zero — m | S[k] — S[add k m] } }

val add_Zero_m : Vmenat, add Zerom = m =

funm { {} }

3/34

EXAMPLE OF PROGRAM AND PROOF

type rec nat = [Zero ; S of nat]
val rec add : nat = nat = nat =

fun nm { case n { Zero — m | S[k] — S[add k m] } }

val add_Zero_m : Vmenat, add Zerom = m =

funm { {} }

val rec add n Zero : Vnenat, add n Zero = n =
fun n {
case n {
Zero — {}

S[p] — add n Zero p

3/34

PART I SPECIFICITIES OF THE TYPE SYSTEM

PArT II FORMALISATION OF THE SYSTEM AND SEMANTICS

PART III SEMANTICAL VALUE RESTRICTION

4/ 34

PART I

SPECIFICITIES OF THE TYPE SYSTEM

5/ 34

PROPERTIES AS PROGRAM EQUIVALENCES

Examples of (equational) program properties:
add (add mn) k = add m (add n k)

rev(revl) =1

- mapg (map f1l) = map (funx {g (fx)}) 1

sort (sort 1) = sortl

(associativity of add)
(rev is an involution)
(map and composition)

(sort is idempotent)

6/ 34

PROPERTIES AS PROGRAM EQUIVALENCES

Examples of (equational) program properties:
add (add mn) k = add m (add n k)

rev(revl) =1

- mapg (map f1l) = map (funx {g (fx)}) 1

sort (sort 1) = sortl

Specification of a sorting function using predicates:

- 1is_increasing (sort 1) = true

- is perm (sort 1) 1 = true

(associativity of add)
(rev is an involution)
(map and composition)

(sort is idempotent)

(sort produces a sorted list)

(sort yields a permutation)

6/ 34

EQuALITY TYPES AND EQUIVALENCE

We consider a new type former t =u (where t and u are untyped programs).

7/ 34

EQuALITY TYPES AND EQUIVALENCE

We consider a new type former t =u (where t and u are untyped programs).
It is interpreted as:

- the unit type T if t and u are “equivalent”,

- the empty type | otherwise.

7/ 34

EQuALITY TYPES AND EQUIVALENCE

We consider a new type former t =u (where t and u are untyped programs).
It is interpreted as:

- the unit type T if t and u are “equivalent”,

- the empty type | otherwise.

dec. proc. says “yes”

2T kFu=uw,

7/ 34

EQuALITY TYPES AND EQUIVALENCE

We consider a new type former t =u (where t and u are untyped programs).

It is interpreted as:
- the unit type T if t and u are “equivalent”,

- the empty type | otherwise.

dec. proc. says “yes”
2T Zhu =, x:T;Z,uyu=u,Ht:C
STHEt:uy =, x:uw=uy; ZFt:C

7/ 34

EQuALITY TYPES AND EQUIVALENCE

We consider a new type former t =u (where t and u are untyped programs).

It is interpreted as:
- the unit type T if t and u are “equivalent”,

- the empty type | otherwise.

dec. proc. says “yes”
T kFu=uw,

Remark: equivalence is undecidable.

x:T;Z,uyu=u,Ht:C

x:uw=uy; ZFt:C

7/ 34

EQuALITY TYPES AND EQUIVALENCE

We consider a new type former t =u (where t and u are untyped programs).

It is interpreted as:
- the unit type T if t and u are “equivalent”,

- the empty type | otherwise.

dec. proc. says “yes”
2T TR =, x:T;Z,uyu=u,Ht:C
STHEt:uy =, Mx:uw=u,; = Ht:C

Remark: equivalence is undecidable.

Remark: decision of equivalence only needs to be correct.

7/ 34

FIRST-ORDER QUANTIFICATION IS NOT ENOUGH

val rec add : nat = nat = nat =

fun nm { case n { Zero — m | S[k] — S[add k m] } }

8 /34

FIRST-ORDER QUANTIFICATION IS NOT ENOUGH

val rec add : nat = nat = nat =

fun nm { case n { Zero — m | S[k] — S[add k m] } }

val add Zero m : vm, add Zerom = m = {- ??? -}

8 /34

FIRST-ORDER QUANTIFICATION IS NOT ENOUGH

val rec add : nat = nat = nat =

fun nm { case n { Zero — m | S[k] — S[add k m] } }

val add Zero m : vm, add Zerom = m = {}

// Immediate by definition

8 /34

FIRST-ORDER QUANTIFICATION IS NOT ENOUGH

val rec add : nat = nat = nat =

fun nm { case n { Zero — m | S[k] — S[add k m] } }

val add Zero m : vm, add Zerom = m = {}
// Immediate by definition
val add n Zero : vn, add n Zero = n = {- ??? -}

8 /34

FIRST-ORDER QUANTIFICATION IS NOT ENOUGH

val rec add : nat = nat = nat =

fun nm { case n { Zero — m | S[k] — S[add k m] } }

val add Zero m : vm, add Zerom = m = {}
// Immediate by definition
val add n Zero : vn, add n Zero = n = {- ??? -}

// Nothing we can do

8 /34

FIRST-ORDER QUANTIFICATION IS NOT ENOUGH

val rec add : nat = nat = nat =

fun nm { case n { Zero - m | S[k] — S[add k m] } }

val add Zero m : vm, add Zerom = m = {}
// Immediate by definition
val add n Zero : vn, add n Zero = n = {- ??? -}

// Nothing we can do

We need a form of typed quantification!

8 /34

DEPENDENT FUNCTIONS FOR TYPED QUANTIFICATION

val rec add n_Zero : Vnenat, add n Zero = n =

fun n {
case n {
Zero — {}

S[p]l — add n _Zero p

9/ 34

DEPENDENT FUNCTIONS FOR TYPED QUANTIFICATION

val rec add n_Zero : Vnenat, add n Zero = n =

fun n {
case n {
Zero — {}

S[p]l — add n _Zero p

Remark: we may inspect the elements of the domain.

9/ 34

DEPENDENT FUNCTIONS FOR TYPED QUANTIFICATION

val rec add n_Zero : Vnenat, add n Zero = n =

fun n {
case n {
Zero — {}

S[p]l — add n _Zero p

Remark: we may inspect the elements of the domain.

Ix:A;ZFt:B
I 2 F Ax.t:VxeA.B

9/ 34

DEPENDENT FUNCTIONS FOR TYPED QUANTIFICATION

val rec add n_Zero : Vnenat, add n Zero = n =

fun n {
case n {
Zero — {}

S[p]l — add n _Zero p

Remark: we may inspect the elements of the domain.

zZkFt:vxeAB T;,ZFv:A

I =ZkFtv:Bx:=v]

Ix:A;ZFt:B
I 2 F Ax.t:VxeA.B

9/ 34

STRUCTURING PROOFS WITH DUMMY PROGRAMS

val rec add n Sm : Vvn menat, add n S[m] = S[add n m] =

fun n m {

case n { Zero —» {} | S[k] — add_n_Sm k m }

}
val rec add comm : Vn menat, add nm = add m n =
fun n m {
case n {
Zero — add n Zero m
S[k] — add n Sm m k; add _comm k m
}
}

10 / 34

PART II

FORMALISATION OF THE SYSTEM AND SEMANTICS

11/ 34

REALIZABILITY MODEL

We build a model to prove that the language has the expected properties.

12 / 34

REALIZABILITY MODEL

We build a model to prove that the language has the expected properties.

To construct the model, we need to:

1) give the syntax of programs and types,

2) define the interpretation of types as sets of terms (uses reduction),
3) define adequate typing rules,

4) deduce termination, type safety and consistency.

12 / 34

REALIZABILITY MODEL

We build a model to prove that the language has the expected properties.

To construct the model, we need to:

1) give the syntax of programs and types,

2) define the interpretation of types as sets of terms (uses reduction),
3) define adequate typing rules,

4) deduce termination, type safety and consistency.

Advantage: it is modular (contrary to type preservation).

12 / 34

Values (A))

Terms (A)

Stacks (1)

Processes

CALL-BY-VALUE ABSTRACT MACHINE

v, W i= x| Ax.t | {(112Vi)i61} | Cylv]

tyu s=vitu| vl | V] (Cilxy ﬁti)iel] | poet | [t
m, & = ole|v.m| [t (evaluation context)
Pyq = txm

13 / 34

CALL-BY-VALUE REDUCTION RELATION

{(l’i:vi)iel}']’k* T > Vk* U (k € I)

I*7 > t[x=vi*m (kel)

£}
o
*
ipal
Y
-
*
A

14 / 34

SUCCESSFUL COMPUTATION AND OBSERVATIONAL EQUIVALENCE

The abstract machine may either:
- successfully compute a result (it converges),

- fail with a runtime error or never terminate (it diverges).

15 / 34

SUCCESSFUL COMPUTATION AND OBSERVATIONAL EQUIVALENCE

The abstract machine may either:
- successfully compute a result (it converges),

- fail with a runtime error or never terminate (it diverges).

Definition: we write t x 7t |} iff t % 7t >* v x ¢ for some value v (t * 7t | otherwise).

15 / 34

SUCCESSFUL COMPUTATION AND OBSERVATIONAL EQUIVALENCE

The abstract machine may either:
- successfully compute a result (it converges),

- fail with a runtime error or never terminate (it diverges).

Definition: we write t x 7t |} iff t % 7t >* v x ¢ for some value v (t * 7t | otherwise).

(Ax.x) {}x¢el (Ax.x x) (Axx x)*xef (Ax.t).lyxe

15 / 34

SUCCESSFUL COMPUTATION AND OBSERVATIONAL EQUIVALENCE

The abstract machine may either:
- successfully compute a result (it converges),

- fail with a runtime error or never terminate (it diverges).

Definition: we write t x 7t |} iff t % 7t >* v x ¢ for some value v (t * 7t | otherwise).

(Ax.x) {}x¢el (Ax.x x) (Axx x)*xef (Ax.t).lyxe

Definition: two terms are equivalent if they converge in the same contexts.

15 / 34

SUCCESSFUL COMPUTATION AND OBSERVATIONAL EQUIVALENCE

The abstract machine may either:
- successfully compute a result (it converges),

- fail with a runtime error or never terminate (it diverges).

Definition: we write t x 7t |} iff t % 7t >* v x ¢ for some value v (t * 7t | otherwise).

(Ax.x) {}x¢el (Ax.x x) (Axx x)*xef (Ax.t).lyxe

Definition: two terms are equivalent if they converge in the same contexts.

= = {t,W|Vn txnl & urml

15 / 34

SUCCESSFUL COMPUTATION AND OBSERVATIONAL EQUIVALENCE

The abstract machine may either:
- successfully compute a result (it converges),

- fail with a runtime error or never terminate (it diverges).

Definition: we write t x 7t |} iff t % 7t >* v x ¢ for some value v (t * 7t | otherwise).

(Ax.x) {}x¢el (Ax.x x) (Axx x)*xef (Ax.t).lyxe

Definition: two terms are equivalent if they converge in the same contexts.

(=) = {6, wIvn Ve, tpxnll & upxmlf

15 / 34

TYPES AS SETS OF CANONICAL VALUES

Definition: a type A is interpreted as a set of values [A] closed under (=).

16 / 34

TYPES AS SETS OF CANONICAL VALUES

Definition: a type A is interpreted as a set of values [A] closed under (=).

AL A = [L=visb=vi} [v € [AT A v € [A]]
[IC: A G AJD = G 1 iefl, 2} A velAd]

[VX.A] = @Qpe[[A[X = 0]

[3X.A] = @LJPEI[A[X = O]

[vx.A] = () [Ala=t]]

v value

[3x.A] = U [Ala:=t]]

v value

16 / 34

MEMBERSHIP TYPES AND DEPENDENCY

We consider a new membership type t€A (with t a term, A a type).
- It is interpreted as [teA] = {v € [A] | t = v},

- and allows the introduction of dependency.

17 | 34

MEMBERSHIP TYPES AND DEPENDENCY

We consider a new membership type t€A (with t a term, A a type).

- It is interpreted as [teA] = {v € [A] | t = v},

- and allows the introduction of dependency.

The dependent function type Vx€A.B
- is defined as Vx.(x€A = B),

- this is a form of relativised quantification scheme.

17 | 34

SEMANTIC RESTRICTION TYPE AND EQUALITIES

We also consider a new restriction type A [P:
- it is build using a type A and a “semantic predicate” P,
- [ATP] is equal to [A] if P is satisfied and to [_L] otherwise.

- We can use predicates like t = u, =P or P A Q.

18 / 34

SEMANTIC RESTRICTION TYPE AND EQUALITIES

We also consider a new restriction type A [P:

- it is build using a type A and a “semantic predicate” P,

- [ATP] is equal to [A] if P is satisfied and to [_L] otherwise.

- We can use predicates like t = u, =P or P A Q.

The equality type t = u is encoded as T [t =u.

18 / 34

INTERPRETATION OF THE FUNCTION TYPE

[A = B] = {Ax.w | Vve[Al,wlx:=v] € [B]}

19 / 34

INTERPRETATION OF THE FUNCTION TYPE

[A = B] = {Ax.w | Vve[Al,wlx:=v] € [B]}

What about A-abstractions which bodies are terms?

19 / 34

INTERPRETATION OF THE FUNCTION TYPE

[A = B] = {Ax.w | Vve[Al,wlx:=v] € [B]}

What about A-abstractions which bodies are terms?

We define a completion operation [A] +— AT

19 / 34

INTERPRETATION OF THE FUNCTION TYPE

[A = B] = {Ax.w | Vve[Al,wlx:=v] € [B]}

What about A-abstractions which bodies are terms?

We define a completion operation [A] +— AT

The set [A]"" contains terms “behaving” as values of [A].

19 / 34

INTERPRETATION OF THE FUNCTION TYPE

[A = B] = {Ax.w | Vve[Al,wlx:=v] € [B]}

What about A-abstractions which bodies are terms?

We define a completion operation [A] +— AT

The set [A]"" contains terms “behaving” as values of [A].

Definition: we take [A = B] = {Ax.t | Vv e [A], tlx:=v] € [B]""}.

19 / 34

POLE AND ORTHOGONALITY

The definition of [A]"" is parametrised by a set of processes 1L C AxIT.

20 [34

POLE AND ORTHOGONALITY

The definition of [A]"" is parametrised by a set of processes 1L C AxIT.

We require that p € I and q > p implies q € L.

20 [34

POLE AND ORTHOGONALITY

The definition of [A]"" is parametrised by a set of processes 1L C AxIT.
We require that p € I and q > p implies q € L.

Intuitively, 1 is a set of processes that “behave well”.

20 [34

POLE AND ORTHOGONALITY

The definition of [A]"" is parametrised by a set of processes 1L C AxIT.

We require that p € I and q > p implies q € L.

Intuitively, 1 is a set of processes that “behave well”.

The set 1L = {p | pl} is a good choice.

20 [34

POLE AND ORTHOGONALITY

The definition of [A]"" is parametrised by a set of processes 1L C AxIT.
We require that p € I and q > p implies q € L.
Intuitively, 1 is a set of processes that “behave well”.
The set 1L = {p | pl} is a good choice.
[A] € {dPCA |vedDAVv=w = we D)

[A]Y = {meTl|VvelAl,vxmn e 1}

[AT™ = {te A|Vre[A]lY tsxme 1}

20 [34

VALUE RESTRICTION AND TYPING JUDGMENTS

Combining call-by-value and effects leads to soundness issues (well-known).

21/ 34

VALUE RESTRICTION AND TYPING JUDGMENTS

Combining call-by-value and effects leads to soundness issues (well-known).

Usual solution: “value restriction” on some typing rules.

21/ 34

VALUE RESTRICTION AND TYPING JUDGMENTS

Combining call-by-value and effects leads to soundness issues (well-known).

Usual solution: “value restriction” on some typing rules.

This is encoded with two forms judgments:
- I'; = Ky v A for values only,
- T'; Z Ft: A for terms (including values).

21/ 34

VALUE RESTRICTION AND TYPING JUDGMENTS

Combining call-by-value and effects leads to soundness issues (well-known).

Usual solution: “value restriction” on some typing rules.

This is encoded with two forms judgments:
- I'; = Ky v A for values only,
- T'; Z Ft: A for terms (including values).

[

21/ 34

VALUE RESTRICTION AND TYPING JUDGMENTS

Combining call-by-value and effects leads to soundness issues (well-known)
Usual solution: “value restriction” on some typing rules

This is encoded with two forms judgments:
- =

K. v : A for values only,
-T;

[

1t : A for terms (including values).

M ZRyv:A NzFt:A=B TI;ZFu:A

MNzZkFv:A MZFtu:B
Nx:A;ZFHt:B

Tx:A; 2 hkygx: A

N ZkyiAxt:A=B

21/ 34

ADEQUATE TYPING RULE

Theorem (adequacy lemma):
- if Ft:A is derivable then t € [A]",
- if k,; v : A is derivable then v € [A].

22 [34

ADEQUATE TYPING RULE

Theorem (adequacy lemma):
- if Ft:A is derivable then t € [A]",
- if k,; v : A is derivable then v € [A].

Proof by induction on the typing derivation.

22 [34

ADEQUATE TYPING RULE

Theorem (adequacy lemma):
- if Ft:A is derivable then t € [A]",
- if k,; v : A is derivable then v € [A].

Proof by induction on the typing derivation.

We only need to check that our typing rules are “correct”.

22 [34

ADEQUATE TYPING RULE

Theorem (adequacy lemma):
- if Ft:A is derivable then t € [A]",
- if k,; v : A is derivable then v € [A].

Proof by induction on the typing derivation.

We only need to check that our typing rules are “correct”.

KaVv:A

- is correct since [A] C [A]"™"
v

For example

22 [34

ADEQUACY OF FOR ALL INTRODUCTION

I ZRkav:A

) Xgr
I Zhkgv: VXA

23/ 34

ADEQUACY OF FOR ALL INTRODUCTION

Xhyv:iA
g V1 VXA

23/ 34

ADEQUACY OF FOR ALL INTRODUCTION

X '7;11 v:iA
v VXA

We suppose v € [A[X = ®]] for all d, and show v € [VX.A].

23/ 34

ADEQUACY OF FOR ALL INTRODUCTION

XEgVv:A
EaVv:VX.A

We suppose v € [A[X = ®]] for all d, and show v € [VX.A].

This is immediate since [VX.A] = N, [AX:= ®]].

23/ 34

ADEQUACY OF FOR ALL INTRODUCTION

XEgVv:A
EaVv:VX.A

We suppose v € [A[X = ®]] for all d, and show v € [VX.A].

This is immediate since [VX.A] = N, [AX:= ®]].

XkEt: A
Ft: VXA

23/ 34

ADEQUACY OF FOR ALL INTRODUCTION

XEgVv:A
EaVv:VX.A

We suppose v € [A[X = ®]] for all d, and show v € [VX.A].

This is immediate since [VX.A] = N, [AX:= ®]].

XkEt: A
Ft: VXA

We suppose t € [A[X:= ®]]* for all &, and show t € [VX.AJ™

23/ 34

ADEQUACY OF FOR ALL INTRODUCTION

XEgVv:A
EaVv:VX.A

We suppose v € [A[X = ®]] for all d, and show v € [VX.A].

This is immediate since [VX.A] = N, [AX:= ®]].

XkEt: A
Ft: VXA

We suppose t € [A[X:= ®]]* for all &, and show t € [VX.AJ™

However we have M, [AX = O]]** € [¥X.AT™ = (ng [AX:= ®]]) .

23/ 34

PROPERTIES OF THE SYSTEM

Theorem (normalisation):

t: A implies t * ¢ > v x ¢ for some value v.

24 [34

PROPERTIES OF THE SYSTEM

Theorem (normalisation):

t: A implies t * ¢ > v x ¢ for some value v.

Theorem (safety for simple datatypes):

t: A implies t * ¢ > v x ¢ for some value v : A.

24 [34

PROPERTIES OF THE SYSTEM

Theorem (normalisation):

t: A implies t * ¢ > v x ¢ for some value v.

Theorem (safety for simple datatypes):

t: A implies t * ¢ > v x ¢ for some value v : A.

Theorem (consistency):

there is no closed term t: L.

24 [34

PART III

SEMANTICAL VALUE RESTRICTION

25 [34

DERIVED RULES FOR DEPENDENT FUNCTIONS

x:AFt:Bla:=x] Ft:VaeAB kKyv:A

Ka Ax.t: Va€eA.B Ftv:Bla:=vV]

26 [34

DERIVED RULES FOR DEPENDENT FUNCTIONS

x:AFt:Bla:=x] Ft:VaeAB kKyv:A

Ka Ax.t: Va€eA.B Ftv:Bla:=vV]

Ft:VacA.B Def FaVv:A .
Ft:Va.(aeA = B) “ g V:iveA
Ft:veA = Bla=v] I—v:ve/\é

Ftv:Bla=v] ’

26 [34

DERIVED RULES FOR DEPENDENT FUNCTIONS

x:AFt:Bla:=x] Ft:VaeAB kKyv:A
Ka Ax.t : Vac€A.B Ftv:Bla:=v]

Ft:VacA.B Def FaVv:A .
Ft:Va.(aeA = B) “ g V:iveA
Ft:veA = Bla=v] I—v:ve/\é

Ftv:Bla=v] ’

Value restriction breaks the compositionality of dependent functions.

// add n Zero : Vvnenat, add n Zero = n

add n Zero (add Zero S[Zero]) : add (add Zero S[Zero]l) Zero = add Zero S[Zero]

26 [34

SEMANTICAL VALUE RESTRICTION

Ft:VaeAB K ;Vv:A by Ft:VaeAB Fu:A Fu=wv

We replace
Ftv:Bla:=v] Ftu:Bla:=1u]

27 | 34

SEMANTICAL VALUE RESTRICTION

Ft:VaeAB K ;v:A Ft:VaeAB Fu:A Fu=wv

We replace by
Ftv:Bla:=v] Ftu:Bla:=1u]
This requires changing —@ YA o FtiA Ft=v
RaVv:veEA Ft:teA

27 | 34

SEMANTICAL VALUE RESTRICTION

Ft:VaeAB K ;v:A Ft:VaeAB Fu:A Fu=wv

We replace by
l_tV:B[a::\)] l_tuB[a,:uJ
This requires changing —@ YA o FtiA Ft=v
RaVv:veEA Ft:teA

Can this rule be derived in the system?

27 | 34

SEMANTICAL VALUE RESTRICTION

Ft:VaeAB K ;v:A Ft:VaeAB Fu:A Fu=wv

We replace by
l_tV:B[a::\)] l_tuB[a.:uJ
This requires changing —@ YA o FtiA Ft=v
RaVv:veEA Ft:teA

Can this rule be derived in the system?

Ft:A Ft=v_

Fv:A
EgVv:iA .
I;alv:veAT'
Fv:veA Ft=v_
Ft:tcA -

27 | 34

BIORTHOGONAL COMPLETION CLOSED FOR VALUES

Fv:A

Everything goes down to having a rule ————.
RaVv:A

28 | 34

BIORTHOGONAL COMPLETION CLOSED FOR VALUES

Everything goes down to having a rule H—A
bal V:iA
It should not be confused with W—A
Fv:A

28 | 34

BIORTHOGONAL COMPLETION CLOSED FOR VALUES

Everything goes down to having a rule H—A
bal V:iA
It should not be confused with W—A
Fv:A

Semantically, this requires that v € [AT" implies v € [A].

28 | 34

BIORTHOGONAL COMPLETION CLOSED FOR VALUES

Everything goes down to having a rule H—A
bal V:iA
It should not be confused with W—A
Fv:A

Semantically, this requires that v € [AT" implies v € [A].

The biorthogonal completion should not introduce new values.

28 | 34

BIORTHOGONAL COMPLETION CLOSED FOR VALUES

Everything goes down to having a rule H—A
bal V:iA
It should not be confused with W—A
Fv:A

Semantically, this requires that v € [AT" implies v € [A].

The biorthogonal completion should not introduce new values.

The rule seems reasonable, but it is hard to justify semantically.

28 | 34

THE NEW INSTRUCTION TRICK

We do not have v € [A]"" implies v € [A] in every realizability model.

29 [34

THE NEW INSTRUCTION TRICK

We do not have v ¢ [A] implies v ¢ [AT" in every realizability model.

29 [34

THE NEW INSTRUCTION TRICK

We do not have v ¢ [A] implies v ¢ [AT" in every realizability model.

We extend the system with a new term constructor 9,,, such that

dywxm>vxm iff v FEw.

29 [34

THE NEW INSTRUCTION TRICK

We do not have v ¢ [A] implies v ¢ [AT" in every realizability model.

We extend the system with a new term constructor 9,,, such that

dywxm>vxm iff v FEw.

Idea of the proof with L = {p | p{}:

29 [34

THE NEW INSTRUCTION TRICK

We do not have v ¢ [A] implies v ¢ [AT" in every realizability model.

We extend the system with a new term constructor 9,,, such that

dywxm>vxm iff v FEw.

Idea of the proof with L = {p | p{}:
- We assume v ¢ [A] and show v ¢ [A]""

29 [34

THE NEW INSTRUCTION TRICK

We do not have v ¢ [A] implies v ¢ [AT" in every realizability model.

We extend the system with a new term constructor 9,,, such that

dywxm>vxm iff v FEw.

Idea of the proof with L = {p | p{}:
- We assume v ¢ [A] and show v ¢ [A]""
- We need to find 7 € [A]" such that v * 7t 1.

29 [34

THE NEW INSTRUCTION TRICK

We do not have v ¢ [A] implies v ¢ [AT" in every realizability model.

We extend the system with a new term constructor 9,,, such that

dywxm>vxm iff v FEw.

Idea of the proof with L = {p | p{}:
- We assume v ¢ [A] and show v ¢ [A]""
- We need to find 7 € [A]" such that v * 7t 1.
- We need to find 7t such that vt and Vw e [A]l,wxn|.

29 [34

THE NEW INSTRUCTION TRICK

We do not have v ¢ [A] implies v ¢ [AT" in every realizability model.

We extend the system with a new term constructor 9,,, such that

dywxm>vxm iff v FEw.

Idea of the proof with L = {p | p{}:
- We assume v ¢ [A] and show v ¢ [A]""
- We need to find 7 € [A]" such that v * 7t 1.
- We need to find 7t such that vt and Vw e [A]l,wxn|.

- We can take 71 = [Ax.0,]e.

29 [34

THE NEW INSTRUCTION TRICK

We do not have v ¢ [A] implies v ¢ [AT" in every realizability model.

We extend the system with a new term constructor 9,,, such that

dywxm>vxm iff v FEw.

Idea of the proof with L = {p | p{}:
- We assume v ¢ [A] and show v ¢ [A]""
- We need to find 7 € [A]" such that v * 7t 1.
We need to find 7t such that vt and Vw e [A], wxm|.

We can take 1 = [Ax.0, €.

vk [Ax.Oy e > A0,k v.e >0, ke

29 [34

THE NEW INSTRUCTION TRICK

We do not have v ¢ [A] implies v ¢ [AT" in every realizability model.

We extend the system with a new term constructor 9,,, such that

dywxm>vxm iff v FEw.

Idea of the proof with L = {p | p{}:
- We assume v ¢ [A] and show v ¢ [A]""
- We need to find 7 € [A]" such that v * 7t 1.
We need to find 7t such that vt and Vw e [A], wxm|.

We can take 1 = [Ax.0, €.

vk [Ax.Oy e > A0,k v.e >0, ke

Wk A0, Je > Ax.d ¥ w.e >0, ke >wxel if we [A]

29 [34

WELL-DEFINED CONSTRUCTION OF EQUIVALENCE AND REDUCTION

Problem: the definitions of (>) and (=) are circular.

30/ 34

WELL-DEFINED CONSTRUCTION OF EQUIVALENCE AND REDUCTION

Problem: the definitions of (>) and (=) are circular.
We need to rely on a stratified construction of the two relations.
(=) = (MU {(évyw*ﬂ,v*ﬂ) | 3j<i,v §éj w}
=) = {(t, u) | Vj<i,vn,Vo, tc*nllj & uc*nﬂj}

We then take
=) = U and = = NE).

ieN ieN

30/ 34

CONCLUSION

31/ 34

THINGS THAT I DID NOT SHOW

1) Syntax directed typing and subtyping rules using:
- local subtyping judgments of the form t € A C B,
- choice operators like €,.5(t € B) or ex(t € A),

- an encoding of “neutral terms” into reduction.

2) Inductive types, coinductive types and recursion (more recent) using:

- circular typing and subtyping proofs,

- well-foundedness established using the size change principle.

3) Unreachable code and refutation of patterns.

32/ 34

FUTURE WORK

Practical issues (work in progress):
- Composing programs that are proved terminating.

- Extensible records and variant types (inference).

Toward a practical language:
- Compiler using typing informations for optimisations.

- Built-in types (int64, float) with their specification.

Theoretical questions:
- Can we handle more side-effects? (mutable cells, arrays)
- What can we realise with (variations of) 9,,,?
- Can we extend the system with quotient types?

- Can we formalise mathematics in the system?

33/ 34

REFERENCES FOR TECHNICAL DETAILS

A Classical Realizability Model for a Semantical Value Restriction
R. Lepigre (ESOP 2016)
https://lepigre.fr/files/docs/lepigre2016_svr.pdf

Practical Subtyping for System F with Sized (Co-)Induction
R. Lepigre and C. Raffalli (submitted in 2017)
https://lepigre.fr/files/docs/lepigre2017_subml.pdf

Semantics and Implementation of an Extension of ML for Proving Programs
R. Lepigre, PhD manuscript
https://github.com/rlepigre/phd/

34/ 34

Thanks!

