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A Programmwng Language, êwth Program Provwng Features
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Example of Program and Proof

type rec nat = [Zero ; S of nat]

val rec add : nat w nat w nat =

fun n m { case n { Zero x m | S[k] x S[add k m] } }
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val add_Zero_m : ymznat, add Zero m u m =
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Propertwes as Program Equwvalences

Examples oz (equational) program properties:

add (add m n) k u add m (add n k) (associativity oz add)

rev (rev l) u l (rev is an involution)

map g (map f l) u map (fun x {g (f x)}) l (map and composition)

sort (sort l) u sort l (sort is idempotent)
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add (add m n) k u add m (add n k) (associativity oz add)

rev (rev l) u l (rev is an involution)

map g (map f l) u map (fun x {g (f x)}) l (map and composition)

sort (sort l) u sort l (sort is idempotent)

Speci{cation oz a sorting zunction using predicates:

is_increasing (sort l) u true (sort produces a sorted list)

is_perm (sort l) l u true (sort yields a permutation)
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Equalwty Types and Equwvalence

We consider a new type zormer t u v (where t and v are untyped programs).
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We consider a new type zormer t u v (where t and v are untyped programs).
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the unit type { iz t and v are |equivalent},

the empty type | otherwise.

Remark: equivalence is undecidable.

Remark: decision oz equivalence only needs to be correct.

dec. proc. says |yes}

} ; ~ � t : { ~ � v u v1 2
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fun n m { case n { Zero x m | S[k] x S[add k m] } }

val add_Zero_m : ym, add Zero m u m = {}

// Immediate by definition

val add_n_Zero : yn, add n Zero u n = {- ??? -}

// Nothing we can do

We need a zorm oz typed quanti{cation!
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Dependent Functwons for Typed Quantwfwcatwon

val rec add_n_Zero : ynznat, add n Zero u n =

fun n {

case n {

Zero x {}

S[p] x add_n_Zero p

}
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Structurwng Proofs êwth Dummy Programs

val rec add_n_Sm : yn mznat, add n S[m] u S[add n m] =

fun n m {

case n { Zero x {} | S[k] x add_n_Sm k m }

}

val rec add_comm : yn mznat, add n m u add m n =

fun n m {

case n {

Zero x add_n_Zero m

S[k] x add_n_Sm m k; add_comm k m

}

}

10 / 34



Part II

Formalwsatwon of the System and Semantwcs
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Realwzabwlwty Model

We build a model to prove that the language has the expected properties.
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We build a model to prove that the language has the expected properties.

To construct the model, we need to:

1) give the syntax oz programs and types,

2) de{ne the interpretation oz types as sets oz terms (uses reduction),

3) de{ne adequate typing rules,

4) deduce termination, type safety and consistency.

Advantage: it is modular (contrary to type preservation).
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Call-by-Value Abstract Machwne
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Call-by-value Reductwon Relatwon
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Successful Computatwon and Observatwonal Equwvalence

The abstract machine may either:

successzully compute a result (it converges),

zail with a runtime error or never terminate (it diverges).
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Membershwp Types and Dependency

We consider a new membership type tzA (with t a term, A a type).

� � � �	 
It is interpreted as tzA = � z A � t u � ,

and allows the introduction oz dependency.
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We consider a new membership type tzA (with t a term, A a type).

� � � �	 
It is interpreted as tzA = � z A � t u � ,

and allows the introduction oz dependency.

The dependent zunction type y�zA.B

is de{ned as y�.(�zA w B),

this is a zorm oz relativised quantizcation scheme.
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Semantwc Restrwctwon Type and Equalwtwes

We also consider a new restriction type A � P:

it is build using a type A and a |semantic predicate} P,

� � � � � �A � P is equal to A iz P is satis{ed and to | otherwise.

We can use predicates like t u v , ¬P or P 
 Q.
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it is build using a type A and a |semantic predicate} P,

� � � � � �A � P is equal to A iz P is satis{ed and to | otherwise.

We can use predicates like t u v , ¬P or P 
 Q.

The equality type t u v is encoded as { � t u v .
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Interpretatwon of the Functwon Type
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What about �-abstractions which bodies are terms?

��� � � �We de{ne a completion operation A ­ A .

��� � � �The set A contains terms |behaving} as values oz A .

��� � � � � �	 
Dewnition: we take A w B = ��.t � y � z A , t[�� �] z B .
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Intuitively, � is a set oz processes that |behave well}.

	 
The set � = p � p� is a good choice.

�A� z 
�z�w�u�
�z��� �®�	

�A� � = 
�z���,�A�z�y��z�	

�A� �� = 
�z��t,�A� �z�y��zt	

20 / 34



Value Restrwctwon and Typwng Judgments

Combining call-by-value and efzects leads to soundness issues (well-known).

21 / 34



Value Restrwctwon and Typwng Judgments

Combining call-by-value and efzects leads to soundness issues (well-known).

Usual solution: |value restriction} on some typing rules.

21 / 34



Value Restrwctwon and Typwng Judgments

Combining call-by-value and efzects leads to soundness issues (well-known).

Usual solution: |value restriction} on some typing rules.

This is encoded with two zorms judgments:

} ; ~ � � : A zor values only,val

} ; ~ � t : A zor terms (including values).

21 / 34



Value Restrwctwon and Typwng Judgments

Combining call-by-value and efzects leads to soundness issues (well-known).

Usual solution: |value restriction} on some typing rules.

This is encoded with two zorms judgments:

} ; ~ � � : A zor values only,val

} ; ~ � t : A zor terms (including values).

} ; ~ � � : Aval

} ; ~ � � : A

21 / 34



Value Restrwctwon and Typwng Judgments

Combining call-by-value and efzects leads to soundness issues (well-known).

Usual solution: |value restriction} on some typing rules.

This is encoded with two zorms judgments:

} ; ~ � � : A zor values only,val

} ; ~ � t : A zor terms (including values).

}, � : A ; ~ � � : Aval

}, � : A ; ~ � t : B
} ; ~ � ��.t : A w Bval

} ; ~ � � : Aval

} ; ~ � � : A
} ; ~ � t : A w B } ; ~ � v : A

} ; ~ � t v : B

21 / 34



Adequate Typwng Rule

Theorem (adequacy lemma):
��� �iz � t : A is derivable then t z A ,

� �iz � � : A is derivable then � z A .val
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��� �iz � t : A is derivable then t z A ,

� �iz � � : A is derivable then � z A .val

Proof by induction on the typing derivation.

We only need to check that our typing rules are |correct}.

��� � : Aval � � � �For example is correct since A ® A .
� � : A
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Adequacy of For All Introductwon

} ; ~ � � : Aval XØ}
} ; ~ � � : yX.Aval
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� � � �This is immediate since yX.A = A[X� �] .��

X � t : A
bad

�t : yX.A

�� ��� � � �We suppose t z A[X� �] zor all �, and show t z yX.A .

���� ��� � � � � �� �However we have A[X� �] Ù yX.A = A[X� �] .� �� �
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Theorem (safety for simple datatypes):

t : A implies t � � � � � � zor some value � : A .

Theorem (consistency):

there is no closed term t : |.
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Part III

Semantwcal Value Restrwctwon
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� ��.t : yazA.B � t � : B[a� �]val

� t : yazA.B � � : AvalDez zi
� t : ya.(azA w B) � � : �zAvaly �e

� t : �zA w B[a� �] � � : �zA
we

� t � : B[a� �]

Value restriction breaks the compositionality oz dependent zunctions.

// add_n_Zero : ynznat, add n Zero u n

add_n_Zero (add Zero S[Zero]) : add (add Zero S[Zero]) Zero u add Zero S[Zero]
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� � : �zA � t : tzAval

Can this rule be derived in the system?

� t : A � t u �
u

� � : A
� � : Aval zi

� � : �zAval �
� � : �zA � t u �

u
� t : tzA
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Bworthogonal Completwon Closed for Values

� � : A
Everything goes down to having a rule .

� � : Aval

� � : AvalIt should not be conzused with .
� � : A

��� � � �Semantically, this requires that � z A implies � z A .

The biorthogonal completion should not introduce new values.

The rule seems reasonable, but it is hard to justizy semantically.
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Well-defwned constructwon of equwvalence and reductwon

� � � �Problem: the de{nitions oz � and u are circular.

We need to rely on a strati{ed construction oz the two relations.

� � � � � �� �� = � Ü Ú �� , � � � � � j < i , � Û �i �,� j

� � � �� �u = t , v � y jÝ i , y � , yÞ, tÞ ��� � vÞ�� �i j j

We then take

� � � � � � � �� = � and u = u .i� i�
i z� i z�
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Concluswon
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Thwngs That I dwd not Shoê

1) Syntax directed typing and subtyping rules using:

local subtyping judgments oz the zorm t z A ß B,

choice operators like � (t Ø B) or � (t Ø A),�zA X

an encoding oz |neutral terms} into reduction.

2) Inductive types, coinductive types and recursion (more recent) using:

circular typing and subtyping proozs,

well-zoundedness established using the si{e change principle.

3) Unreachable code and rezutation oz patterns.
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Future Work

Practical issues (work in progress):

Composing programs that are proved terminating.

Extensible records and variant types (inzerence).

Toward a practical language:

Compiler using typing inzormations zor optimisations.

Built-in types (int64, �oat) with their speci{cation.

Theoretical questions:

Can we handle more side-efzects? (mutable cells, arrays)

What can we realise with (variations oz) Ú ?�,�

Can we extend the system with quotient types?

Can we zormalise mathematics in the system?
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