
Prophecy Variables in Separation Logic
(Extending Iris with Prophecy Variables)

Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy,
Marianna Rapoport, Amin Timany, Derek Dreyer, Bart Jacobs
MPI-SWS, KU Leuven, ETH Zürich, University of Waterloo

Iris Workshop – Aarhus, October 2019



Reasoning about the correctness of a program

Forward reasoning is o�en easier and more natural:

• Start at the beginning of a program’s execution

• Reason about how it behaves as it executes

Strictly forward reasoning is not always good enough!

Reasoning about the current execution step may require:

• Information about past events (this is usual)

• Knowledge of what will happen later in the execution

1



Reasoning about the correctness of a program

Forward reasoning is o�en easier and more natural:

• Start at the beginning of a program’s execution

• Reason about how it behaves as it executes

Strictly forward reasoning is not always good enough!

Reasoning about the current execution step may require:

• Information about past events (this is usual)

• Knowledge of what will happen later in the execution

1



Reasoning about the correctness of a program

Forward reasoning is o�en easier and more natural:

• Start at the beginning of a program’s execution

• Reason about how it behaves as it executes

Strictly forward reasoning is not always good enough!

Reasoning about the current execution step may require:

• Information about past events (this is usual)

• Knowledge of what will happen later in the execution

1



Remember the past, know the future

Auxiliary/ghost variables store information not present in the
program’s physical state

History variables [Owicki & Gries 1976] (past):

• Record what happened in the execution so far
• Introduced in the context of Hoare logic
• Widely used (modern form: user-defined ghost state)

Prophecy variables [Abadi & Lamport 1991] (future):

• Predict what will happen later in the execution
• Introduced in the context of state machine refinement
• Fairly exotic, (almost) never used for Hoare logic

2



Remember the past, know the future

Auxiliary/ghost variables store information not present in the
program’s physical state

History variables [Owicki & Gries 1976] (past):

• Record what happened in the execution so far
• Introduced in the context of Hoare logic
• Widely used (modern form: user-defined ghost state)

Prophecy variables [Abadi & Lamport 1991] (future):

• Predict what will happen later in the execution
• Introduced in the context of state machine refinement
• Fairly exotic, (almost) never used for Hoare logic

2



Motivating example: eager specification

Let us look at a simple coin implementation:

new_coin() , {val = ref(nondet_bool())}
read_coin(c) , !c.val

Used for the sake of presentation

We consider an “eager” coin specification:

• A coin is only ever tossed once
• Reading its value always gives the same result

{True} new_coin() {c. ∃b.Coin(c,b)}
{Coin(c,b)} read_coin(c) {x. x = b ∧ Coin(c,b)}

Coin(c,b) , c.val 7→ b

3



Motivating example: eager specification

Let us look at a simple coin implementation:

new_coin() , {val = ref(nondet_bool())}
read_coin(c) , !c.val

Used for the sake of presentation

We consider an “eager” coin specification:

• A coin is only ever tossed once
• Reading its value always gives the same result

{True} new_coin() {c. ∃b.Coin(c,b)}
{Coin(c,b)} read_coin(c) {x. x = b ∧ Coin(c,b)}

Coin(c,b) , c.val 7→ b

3



Motivating example: eager specification

Let us look at a simple coin implementation:

new_coin() , {val = ref(nondet_bool())}
read_coin(c) , !c.val

Used for the sake of presentation

We consider an “eager” coin specification:

• A coin is only ever tossed once
• Reading its value always gives the same result

{True} new_coin() {c. ∃b.Coin(c,b)}
{Coin(c,b)} read_coin(c) {x. x = b ∧ Coin(c,b)}

Coin(c,b) , c.val 7→ b

3



Motivating example: eager specification

Let us look at a simple coin implementation:

new_coin() , {val = ref(nondet_bool())}
read_coin(c) , !c.val

Used for the sake of presentation

We consider an “eager” coin specification:

• A coin is only ever tossed once
• Reading its value always gives the same result

{True} new_coin() {c. ∃b.Coin(c,b)}
{Coin(c,b)} read_coin(c) {x. x = b ∧ Coin(c,b)}

Coin(c,b) , c.val 7→ b

3



Motivating example: eager specification

Let us look at a simple coin implementation:

new_coin() , {val = ref(nondet_bool())}
read_coin(c) , !c.val

Used for the sake of presentation

We consider an “eager” coin specification:

• A coin is only ever tossed once
• Reading its value always gives the same result

{True} new_coin() {c. ∃b.Coin(c,b)}
{Coin(c,b)} read_coin(c) {x. x = b ∧ Coin(c,b)}

Coin(c,b) , c.val 7→ b
3



Motivating example: lazy implementation

What if we want to flip the coin as late as possible?

“Lazy” coin implementation:

new_coin() , {val = ref(None)}

read_coin(c) , match ! c.val with
Some(b)⇒ b
| None ⇒ letb = nondet_bool();

c.val← Some(b); b
end

To keep the same spec we need prophecy variables!!!

4



Motivating example: lazy implementation

What if we want to flip the coin as late as possible?

“Lazy” coin implementation:

new_coin() , {val = ref(None)}

read_coin(c) , match ! c.val with
Some(b)⇒ b
| None ⇒ letb = nondet_bool();

c.val← Some(b); b
end

To keep the same spec we need prophecy variables!!!

4



Motivating example: lazy implementation

What if we want to flip the coin as late as possible?

“Lazy” coin implementation:

new_coin() , {val = ref(None)}

read_coin(c) , match ! c.val with
Some(b)⇒ b
| None ⇒ letb = nondet_bool();

c.val← Some(b); b
end

To keep the same spec we need prophecy variables!!!

4



Prior work on prophecy variables

Prophecy variables have been used in:

• Verification tools based on reduction [Sezgin et al. 2010]

• Temporal logic [Cook & Koskinen 2011, Lamport & Merz 2017]

But never formally integrated into Hoare logic before!!!

Only two previous attempts:

• Vafeiadis’s thesis [Vafeiadis 2007] (informal and flawed)

• Structural approach [Zhang et al. 2012] (too limited)

5



Prior work on prophecy variables

Prophecy variables have been used in:

• Verification tools based on reduction [Sezgin et al. 2010]

• Temporal logic [Cook & Koskinen 2011, Lamport & Merz 2017]

But never formally integrated into Hoare logic before!!!

Only two previous attempts:

• Vafeiadis’s thesis [Vafeiadis 2007] (informal and flawed)

• Structural approach [Zhang et al. 2012] (too limited)

5



Prior work on prophecy variables

Prophecy variables have been used in:

• Verification tools based on reduction [Sezgin et al. 2010]

• Temporal logic [Cook & Koskinen 2011, Lamport & Merz 2017]

But never formally integrated into Hoare logic before!!!

Only two previous attempts:

• Vafeiadis’s thesis [Vafeiadis 2007] (informal and flawed)

• Structural approach [Zhang et al. 2012] (too limited)

5



Our contribution: prophecy variables in Hoare logic

We are the first to give a formal account of prophecy variables
in Hoare logic!

• Our results are all formalized in the Iris framework

• We also extended VeriFast with prophecy variables

• Useful to prove logical atomicity (RDCSS, HW Queue)

Presented this morning by Ralf
Prophecies help in case of “future-dependent” LP

6



Our contribution: prophecy variables in Hoare logic

We are the first to give a formal account of prophecy variables
in Hoare logic!

• Our results are all formalized in the Iris framework

• We also extended VeriFast with prophecy variables

• Useful to prove logical atomicity (RDCSS, HW Queue)

Presented this morning by Ralf
Prophecies help in case of “future-dependent” LP

6



Key idea of our approach

We leverage separation logic to easily ensure soundness!!!

The high-level idea is to use new instruction for:

• Predicting a future observation (letp = NewProph)

• Realizing such an observation (Resolvep to v)

Principles of prophecy variables in separation logic:

1. The future is ours
• We model the right to resolve a prophecy as a resource
• ProphB

1 (p,b) gives exclusive right to resolve p

2. We must fulfill our destiny
• A prophecy can only be resolved to the predicted value
• A contradiction can be derived if that is not the case

“Assign a value to”

7



Key idea of our approach

We leverage separation logic to easily ensure soundness!!!

The high-level idea is to use new instruction for:

• Predicting a future observation (letp = NewProph)

• Realizing such an observation (Resolvep to v)

Principles of prophecy variables in separation logic:

1. The future is ours
• We model the right to resolve a prophecy as a resource
• ProphB

1 (p,b) gives exclusive right to resolve p

2. We must fulfill our destiny
• A prophecy can only be resolved to the predicted value
• A contradiction can be derived if that is not the case

“Assign a value to”

7



Key idea of our approach

We leverage separation logic to easily ensure soundness!!!

The high-level idea is to use new instruction for:

• Predicting a future observation (letp = NewProph)

• Realizing such an observation (Resolvep to v)

Principles of prophecy variables in separation logic:

1. The future is ours
• We model the right to resolve a prophecy as a resource
• ProphB

1 (p,b) gives exclusive right to resolve p

2. We must fulfill our destiny
• A prophecy can only be resolved to the predicted value
• A contradiction can be derived if that is not the case

“Assign a value to”

7



Key idea of our approach

We leverage separation logic to easily ensure soundness!!!

The high-level idea is to use new instruction for:

• Predicting a future observation (letp = NewProph)

• Realizing such an observation (Resolvep to v)

Principles of prophecy variables in separation logic:

1. The future is ours
• We model the right to resolve a prophecy as a resource
• ProphB

1 (p,b) gives exclusive right to resolve p

2. We must fulfill our destiny
• A prophecy can only be resolved to the predicted value
• A contradiction can be derived if that is not the case

“Assign a value to”

7



Key idea of our approach

We leverage separation logic to easily ensure soundness!!!

The high-level idea is to use new instruction for:

• Predicting a future observation (letp = NewProph)

• Realizing such an observation (Resolvep to v)

Principles of prophecy variables in separation logic:

1. The future is ours
• We model the right to resolve a prophecy as a resource
• ProphB

1 (p,b) gives exclusive right to resolve p

2. We must fulfill our destiny
• A prophecy can only be resolved to the predicted value
• A contradiction can be derived if that is not the case

“Assign a value to”

7



“One-shot” prophecy variable specification

Prophecy variables are manipulated using ghost code

{True}
NewProph

{p. ∃b. ProphB
1 (p,b)}

(Creates a one-shot prophecy variable p)

Provides an exclusive resolution token

{ProphB
1 (p,b)}

Resolvep to v
{v = b}

(Resolves the prophecy p to value v)

Consumes the resolution token

But we learn that the prophesied and
resolved values are equal

8



“One-shot” prophecy variable specification

Prophecy variables are manipulated using ghost code

{True}
NewProph

{p. ∃b. ProphB
1 (p,b)}

(Creates a one-shot prophecy variable p)

Provides an exclusive resolution token

{ProphB
1 (p,b)}

Resolvep to v
{v = b}

(Resolves the prophecy p to value v)

Consumes the resolution token

But we learn that the prophesied and
resolved values are equal

8



“One-shot” prophecy variable specification

Prophecy variables are manipulated using ghost code

{True}
NewProph

{p. ∃b. ProphB
1 (p,b)}

(Creates a one-shot prophecy variable p)

Provides an exclusive resolution token

{ProphB
1 (p,b)}

Resolvep to v
{v = b}

(Resolves the prophecy p to value v)

Consumes the resolution token

But we learn that the prophesied and
resolved values are equal

8



“One-shot” prophecy variable specification

Prophecy variables are manipulated using ghost code

{True}
NewProph

{p. ∃b. ProphB
1 (p,b)}

(Creates a one-shot prophecy variable p)

Provides an exclusive resolution token

{ProphB
1 (p,b)}

Resolvep to v
{v = b}

(Resolves the prophecy p to value v)

Consumes the resolution token

But we learn that the prophesied and
resolved values are equal

8



“One-shot” prophecy variable specification

Prophecy variables are manipulated using ghost code

{True}
NewProph

{p. ∃b. ProphB
1 (p,b)}

(Creates a one-shot prophecy variable p)

Provides an exclusive resolution token

{ProphB
1 (p,b)}

Resolvep to v
{v = b}

(Resolves the prophecy p to value v)

Consumes the resolution token

But we learn that the prophesied and
resolved values are equal

8



“One-shot” prophecy variable specification

Prophecy variables are manipulated using ghost code

{True}
NewProph

{p. ∃b. ProphB
1 (p,b)}

(Creates a one-shot prophecy variable p)

Provides an exclusive resolution token

{ProphB
1 (p,b)}

Resolvep to v
{v = b}

(Resolves the prophecy p to value v)

Consumes the resolution token

But we learn that the prophesied and
resolved values are equal

8



Back to the lazy coin example

With the required ghost code the example becomes:

new_coin() , {val = ref(None),p = NewProph}

read_coin(c) , match ! c.val with
Some(b)⇒ b
| None ⇒ letb = nondet_bool();

Resolve c.p tob;

c.val← Some(b); b
end

The specification can be proved using:

Coin(c,b) , (c.val 7→ Some b) ∨
(c.val 7→ None ∗ ProphB

1 (c.p,b))

9



Back to the lazy coin example

With the required ghost code the example becomes:

new_coin() , {val = ref(None),p = NewProph}

read_coin(c) , match ! c.val with
Some(b)⇒ b
| None ⇒ letb = nondet_bool();

Resolve c.p tob;

c.val← Some(b); b
end

The specification can be proved using:

Coin(c,b) , (c.val 7→ Some b) ∨
(c.val 7→ None ∗ ProphB

1 (c.p,b))

9



Is the one-shot prophecy mechanism general enough?

Consider the following coin implementation:

new_coin() , {val = ref(nondet_bool())}

read_coin(c) , ! c.val

toss_coin(c) , c.val← nondet_bool();

What if we want a “clairvoyant” specification?

{True} new_coin() {c. ∃bs.Coin(c,bs)}

{Coin(c,bs)} read_coin(c) {b. ∃bs′.bs = b :: bs′ ∧ Coin(c,bs)}

{Coin(c,bs)} toss_coin(c) {∃b,bs′.bs = b :: bs′ ∧ Coin(c,bs′)}

10



Is the one-shot prophecy mechanism general enough?

Consider the following coin implementation:

new_coin() , {val = ref(nondet_bool())}

read_coin(c) , ! c.val

toss_coin(c) , c.val← nondet_bool();

What if we want a “clairvoyant” specification?

{True} new_coin() {c. ∃bs.Coin(c,bs)}

{Coin(c,bs)} read_coin(c) {b. ∃bs′.bs = b :: bs′ ∧ Coin(c,bs)}

{Coin(c,bs)} toss_coin(c) {∃b,bs′.bs = b :: bs′ ∧ Coin(c,bs′)}

10



One shot is not enough

Generalization: prophecy a sequence of resolutions!

{True}
NewProph

{p. ∃bs. ProphB(p,bs)}

Prophecy assertion now holds a list

{ProphB(p,bs)}
Resolvep to v
{∃bs′.bs = v :: bs′ ∧ ProphB(p,bs′)}

Resolving just pops one element

One-shot prophecies can be encoded easily

11



One shot is not enough

Generalization: prophecy a sequence of resolutions!

{True}
NewProph

{p. ∃bs. ProphB(p,bs)}

Prophecy assertion now holds a list

{ProphB(p,bs)}
Resolvep to v
{∃bs′.bs = v :: bs′ ∧ ProphB(p,bs′)}

Resolving just pops one element

One-shot prophecies can be encoded easily

11



One shot is not enough

Generalization: prophecy a sequence of resolutions!

{True}
NewProph

{p. ∃bs. ProphB(p,bs)}

Prophecy assertion now holds a list

{ProphB(p,bs)}
Resolvep to v
{∃bs′.bs = v :: bs′ ∧ ProphB(p,bs′)}

Resolving just pops one element

One-shot prophecies can be encoded easily

11



One shot is not enough

Generalization: prophecy a sequence of resolutions!

{True}
NewProph

{p. ∃bs. ProphB(p,bs)}

Prophecy assertion now holds a list

{ProphB(p,bs)}
Resolvep to v
{∃bs′.bs = v :: bs′ ∧ ProphB(p,bs′)}

Resolving just pops one element

One-shot prophecies can be encoded easily

11



One shot is not enough

Generalization: prophecy a sequence of resolutions!

{True}
NewProph

{p. ∃bs. ProphB(p,bs)}

Prophecy assertion now holds a list

{ProphB(p,bs)}
Resolvep to v
{∃bs′.bs = v :: bs′ ∧ ProphB(p,bs′)}

Resolving just pops one element

One-shot prophecies can be encoded easily

11



Back to the clairvoyant coin example

Clairvoyant coin implementation:

new_coin() , let v = ref(nondet_bool());

{val = v,p = NewProph}

read_coin(c) , ! c.val

toss_coin(c) , let r = nondet_bool();

Resolve c.p to r;
c.val← r

The specification can be proved using:

Coin(c,bs) , ∃b,bs′. c.val 7→ b ∧ ProphB(p,bs′)
∧ bs = b :: bs′

12



Back to the clairvoyant coin example

Clairvoyant coin implementation:

new_coin() , let v = ref(nondet_bool());

{val = v,p = NewProph}

read_coin(c) , ! c.val

toss_coin(c) , let r = nondet_bool();

Resolve c.p to r;
c.val← r

The specification can be proved using:

Coin(c,bs) , ∃b,bs′. c.val 7→ b ∧ ProphB(p,bs′)
∧ bs = b :: bs′

12



A glimpse at the model of weakest pre

Modified model of weakest preconditions (simplified):

wp e1 {Φ} , if e1 ∈ Val then Φ(e1) else (return value)
∀σ1, ~κ1, ~κ2. S(σ1, ~κ1 ++ ~κ2)

reducible(e1, σ1) ∧ (progress)

∀e2, σ2,~ef .
(
(e1, σ1)→ (e2, σ2,~ef , ~κ1)

)
S(σ2, ~κ2) ∗ wp e2 {Φ} ∗∗e∈~ef wp e {True}

(preservation)

S(σ,~κ) , •σ.1 γheap ∗ ∃Π. •Π
γproph ∧ dom(Π) = σ.2 ∧

∀{p← vs} ∈ Π. vs = filter(p, ~κ)

(state interp.)

Reduction now collects
“observations”

Observations yet
to be made

13



A glimpse at the model of weakest pre

Modified model of weakest preconditions (simplified):

wp e1 {Φ} , if e1 ∈ Val then Φ(e1) else (return value)
∀σ1, ~κ1, ~κ2. S(σ1, ~κ1 ++ ~κ2)

reducible(e1, σ1) ∧ (progress)

∀e2, σ2,~ef .
(
(e1, σ1)→ (e2, σ2,~ef , ~κ1)

)
S(σ2, ~κ2) ∗ wp e2 {Φ} ∗∗e∈~ef wp e {True}

(preservation)

S(σ,~κ) , •σ.1 γheap ∗ ∃Π. •Π
γproph ∧ dom(Π) = σ.2 ∧

∀{p← vs} ∈ Π. vs = filter(p, ~κ)

(state interp.)

Reduction now collects
“observations”

Observations yet
to be made

13



A glimpse at the model of weakest pre

Modified model of weakest preconditions (simplified):

wp e1 {Φ} , if e1 ∈ Val then Φ(e1) else (return value)
∀σ1, ~κ1, ~κ2. S(σ1, ~κ1 ++ ~κ2)

reducible(e1, σ1) ∧ (progress)

∀e2, σ2,~ef .
(
(e1, σ1)→ (e2, σ2,~ef , ~κ1)

)
S(σ2, ~κ2) ∗ wp e2 {Φ} ∗∗e∈~ef wp e {True}

(preservation)

S(σ,~κ) , •σ.1 γheap ∗ ∃Π. •Π
γproph ∧ dom(Π) = σ.2 ∧

∀{p← vs} ∈ Π. vs = filter(p, ~κ)

(state interp.)

Reduction now collects
“observations”

Observations yet
to be made

13



Wrapping up!

Iris now has support for prophecy variables:

• First formal integration into a program logic
• Useful for logically atomic specifications (Ralf’s talk)
• But that’s not the only application (see François’s talk)

Things there was no time for:

• Atomic resolution of prophecy variables
• Logically atomic spec for RDCSS and Herlihy-Wing queue
• Erasure theorem (elimination of ghost code)

14



Wrapping up!

Iris now has support for prophecy variables:

• First formal integration into a program logic
• Useful for logically atomic specifications (Ralf’s talk)
• But that’s not the only application (see François’s talk)

Things there was no time for:

• Atomic resolution of prophecy variables
• Logically atomic spec for RDCSS and Herlihy-Wing queue
• Erasure theorem (elimination of ghost code)

14



Wrapping up!

Iris now has support for prophecy variables:

• First formal integration into a program logic
• Useful for logically atomic specifications (Ralf’s talk)
• But that’s not the only application (see François’s talk)

Things there was no time for:

• Atomic resolution of prophecy variables
• Logically atomic spec for RDCSS and Herlihy-Wing queue
• Erasure theorem (elimination of ghost code)

14



Thanks! Questions?
(For more details: https://iris-project.org)

https://iris-project.org


Model of weakest preconditions in Iris

Encoding of weakest preconditions (simplified):

wp e1 {Φ} , if e1 ∈ Val then Φ(e1) else (return value)
∀σ1. S(σ1)

reducible(e1, σ1) ∧ (progress)

∀e2, σ2,~ef .
(
(e1, σ1)→ (e2, σ2,~ef )

)
S(σ2) ∗ wp e2 {Φ} ∗∗e∈~ef wp e {True}

 (preservation)

S(σ) , •σ γheap (state interp.)

Some intuitions about the involved components:

• The state interpretation holds the state of the physical heap

• View shi�s P Q allow updates to owned resources

• The actual definition uses the .P modality to avoid circularity
15



Operational semantics: head reduction and observations

We extend reduction rules with observations:

(n+m, σ)→h (n+m, σ, ε, ε)
(ref(v), σ)→h (`, σ ] {`← v}, ε, ε)

(`← w, σ ] {`← v})→h (`, σ ] {`← w}, ε, ε)
(fork {e} , σ)→h ((), σ, e :: ε, ε)

(Resolvep to v, σ)→h ((), σ, ε, (p, v) :: ε)

(NewProph, σ)→h (p, σ ] {p}, ε, ε)

A couple of remarks:

• Observations are only recorded on resolutions
• State σ now records the prophecy variables in scope

16



Extension for prophecy variables

Encoding of weakest preconditions (simplified):

wp e1 {Φ} , if e1 ∈ Val then Φ(e1) else (return value)
∀σ1, ~κ1, ~κ2. S(σ1, ~κ1 ++ ~κ2)

reducible(e1, σ1) ∧ (progress)

∀e2, σ2,~ef .
(
(e1, σ1)→ (e2, σ2,~ef , ~κ1)

)
S(σ2, ~κ2) ∗ wp e2 {Φ} ∗∗e∈~ef wp e {True}

(preservation)

S(σ,~κ) , •σ.1 γheap ∗ ∃Π. •Π
γproph ∧ dom(Π) = σ.2 ∧

∀{p← vs} ∈ Π. vs = filter(p, ~κ)

(state interp.)

Some more intuitions about the involved components:

• State interpretation: holds observations yet to be made

• Observations are removed from the list when taking steps
17



Statement of safety and adequacy

Safety with respect to a (pure) predicate:

Safeφ(e1) , ∀ ~es, σ, ~κ. ([e1],∅)→∗tp (e2 :: ~es, σ, ~κ)

⇒ properφ(e2, σ) ∧ ∀e ∈ ~es. properTrue(e, σ)

properψ(e, σ) , (e ∈ Val ∧ ψ(e)) ∨ reducible(e, σ)

Theorem (adequacy). Let e be an expression and φ be a (pure)
predicate. If wp e {φ} is provable then Safeφ(e).

18


