Prophecy Variables in Separation Logic
(Extending Iris with Prophecy Variables)

Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy,
Marianna Rapoport, Amin Timany, Derek Dreyer, Bart Jacobs

MPI-SWS, KU Leuven, ETH Ziirich, University of Waterloo

Iris Workshop — Aarhus, October 2019

Reasoning about the correctness of a program

Forward reasoning is often easier and more natural:

- Start at the beginning of a program’s execution
« Reason about how it behaves as it executes

Reasoning about the correctness of a program

Forward reasoning is often easier and more natural:

- Start at the beginning of a program’s execution
« Reason about how it behaves as it executes

Strictly forward reasoning is not always good enough!

Reasoning about the correctness of a program

Forward reasoning is often easier and more natural:

- Start at the beginning of a program’s execution
« Reason about how it behaves as it executes

Strictly forward reasoning is not always good enough!

Reasoning about the current execution step may require:

+ Information about past events (this is usual)

« Knowledge of what will happen later in the execution

Remember the past, know the future

Aucxiliary/ghost variables store information not present in the
program’s physical state

History variables [Owicki & Gries 1976] (past):

« Record what happened in the execution so far
« Introduced in the context of Hoare logic

« Widely used (modern form: user-defined ghost state)

Remember the past, know the future

Aucxiliary/ghost variables store information not present in the
program’s physical state

History variables [Owicki & Gries 1976] (past):

« Record what happened in the execution so far
« Introduced in the context of Hoare logic
« Widely used (modern form: user-defined ghost state)

Prophecy variables [Abadi & Lamport 1991] (future):

« Predict what will happen later in the execution
« Introduced in the context of state machine refinement
« Fairly exotic, (almost) never used for Hoare logic

Motivating example: eager specification

Let us look at a simple coin implementation:

[[>

A

{val = ref(nondet_bool())}

Ic.val

Motivating example: eager specification

Let us look at a simple coin implementation:

—~
N
[[>

{val = ref(nondet_bool())}
(c) £ lc.val

Used for the sake of presentation

—_—

Motivating example: eager specification

Let us look at a simple coin implementation:

new_coin() = {val = ref(nondet_bool())}

A

read_coin(cC) Ic.val

Used for the sake of presentation

—_—

We consider an “eager” coin specification:

« A coinis only ever tossed once
 Reading its value always gives the same result

Motivating example: eager specification

Let us look at a simple coin implementation:

new_coin() = {val = ref(nondet_bool())}

A

read_coin(cC) Ic.val

Used for the sake of presentation

—_—

We consider an “eager” coin specification:

« A coinis only ever tossed once
 Reading its value always gives the same result

{True} new_coin() {c. 3b. Coin(c,b)}
{Coin(c,b)} read_coin(c) {x. x = b A Coin(c,b)}

Motivating example: eager specification

Let us look at a simple coin implementation:

new_coin() = {val = ref(nondet_bool())}

A

read_coin(cC) Ic.val

Used for the sake of presentation

—_—

We consider an “eager” coin specification:

« A coinis only ever tossed once
 Reading its value always gives the same result

{True} new_coin() {c. 3b. Coin(c,b)}
{Coin(c,b)} read_coin(c) {x. x = b A Coin(c,b)}

Coin(c,b) £ c.val — b

Motivating example: lazy implementation

What if we want to flip the coin as late as possible?

Motivating example: lazy implementation

What if we want to flip the coin as late as possible?

“Lazy” coin implementation:

() = {val = ref(None)}

(¢) £ match!c.valwith
Some(b) = b
| None = let b = nondet_bool();

c.val + Some(b); b
end

Motivating example: lazy implementation

What if we want to flip the coin as late as possible?

“Lazy” coin implementation:

new_coin() £ {val = ref(None)}
read_coin(c€) £ match!c.valwith
Some(b) = b
| None = let b = nondet_bool();

c.val + Some(b); b
end

To keep the same spec we need prophecy variables!!!

Prior work on prophecy variables

Prophecy variables have been used in:

« Verification tools based on reduction [Sezgin et al. 2010]

« Temporal logic [Cook & Koskinen 2011, Lamport & Merz 2017]

Prior work on prophecy variables

Prophecy variables have been used in:

« Verification tools based on reduction [Sezgin et al. 2010]

« Temporal logic [Cook & Koskinen 2011, Lamport & Merz 2017]

But never formally integrated into Hoare logic before!!!

Prior work on prophecy variables

Prophecy variables have been used in:

« Verification tools based on reduction [Sezgin et al. 2010]

« Temporal logic [Cook & Koskinen 2011, Lamport & Merz 2017]

But never formally integrated into Hoare logic before!!!

Only two previous attempts:

- Vafeiadis's thesis [Vafeiadis 2007] (informal and flawed)

« Structural approach [Zhang et al. 2012] (too limited)

Our contribution: prophecy variables in Hoare logic

We are the first to give a formal account of prophecy variables
in Hoare logic!

+ Our results are all formalized in the Iris framework

« We also extended VeriFast with prophecy variables

« Useful to prove logical atomicity (RDCSS, HW Queue)

Our contribution: prophecy variables in Hoare logic

We are the first to give a formal account of prophecy variables
in Hoare logic!

+ Our results are all formalized in the Iris framework

« We also extended VeriFast with prophecy variables

« Useful to prove logical atomicity (RDCSS, HW Queue)

Presented this morning by Ralf
Prophecies help in case of “future-dependent” LP

Key idea of our approach

We leverage separation logic to easily ensure soundness!!!

Key idea of our approach

We leverage separation logic to easily ensure soundness!!!

The high-level idea is to use new instruction for:
« Predicting a future observation (let p = NewProph)

« Realizing such an observation (Resolve ptoV)

Key idea of our approach

We leverage separation logic to easily ensure soundness!!!

Principles of prophecy variables in separation logic:

1. The future is ours

« We model the right to resolve a prophecy as a resource
. ProphﬂB(p, b) gives exclusive right to resolve p

Key idea of our approach

We leverage separation logic to easily ensure soundness!!!

Principles of prophecy variables in separation logic:

1. The future is ours

« We model the right to resolve a prophecy as a\resource
. ProphﬂB(p, b) gives exclusive right to resolve p

“Assign a value to”

Key idea of our approach

We leverage separation logic to easily ensure soundness!!!

Principles of prophecy variables in separation logic:

1. The future is ours

« We model the right to resolve a prophecy as a\resource
. ProphﬂB(p, b) gives exclusive right to resolve p

. HA M ”
2. We must fulfill our destiny ssign avalue to

« A prophecy can only be resolved to the predicted value
+ A contradiction can be derived if that is not the case

“One-shot” prophecy variable specification

Prophecy variables are manipulated using ghost code

“One-shot” prophecy variable specification

Prophecy variables are manipulated using ghost code

{True}

NewProph (Creates a one-shot prophecy variable p)
{p. 3b. Proph’(p, b)}

“One-shot” prophecy variable specification

Prophecy variables are manipulated using ghost code

Provides an exclusive resolution token
{True} —_—

NewProph (Creates a one-shot prophecy variable p)
{p. 3b. Proph’(p, b)}

“One-shot” prophecy variable specification

Prophecy variables are manipulated using ghost code

Provides an exclusive resolution token
{True} —

NewProph (Creates a one-shot prophecy variable p)
{p. 3b. Proph’(p, b)}

{Proph?(p,b)}
Resolve ptoV (Resolves the prophecy p to value v)

{v=>b}

“One-shot” prophecy variable specification

Prophecy variables are manipulated using ghost code

Provides an exclusive resolution token
{True} —

NewProph (Creates a one-shot prophecy variable p)
{p. 3b. Proph’(p, b)}

Consumes the resolution token 1

{Proph?(p,b)}
Resolve ptoV (Resolves the prophecy p to value v)

{v=>b}

“One-shot” prophecy variable specification

Prophecy variables are manipulated using ghost code

Provides an exclusive resolution token
{True} —

NewProph (Creates a one-shot prophecy variable p)
{p. 3b. Proph’(p, b)}

Consumes the resolution token 1

{Proph?(p,b)}
Resolve ptoV (Resolves the prophecy p to value v)
{v=0>b

But we learn that the prophesied and
resolved values are equal

Back to the lazy coin example

With the required ghost code the example becomes:
0 £ {val = ref(None), p = NewProph}

€) £ match!c.valwith
(c)
Some(b) = b
| None = letb = nondet_bool();

ResolveC.ptob;

c.val + Some(b); b
end

Back to the lazy coin example

With the required ghost code the example becomes:
new_coin() £ {val = ref(None), p = NewProph}
read_coin(C) £ match!c.valwith
Some(b) = b
| None = letb = nondet_bool();

ResolveC.ptob;

c.val + Some(b); b
end

The specification can be proved using:
Coin(c, b) = (c.val — Some b) v

(c.val — None x ProphZ(c.p, b))

Is the one-shot prophecy mechanism general enough?

Consider the following coin implementation:

() £ {val = ref(nondet_bool())}
(c) £ !cval

(c) £ c.val + nondet_bool();

10

Is the one-shot prophecy mechanism general enough?

Consider the following coin implementation:
new_coin() £ {val = ref(nondet_bool())}
read_coin(c) £ ! c.val

toss_coin(c) £ c.val + nondet_bool();

What if we want a “clairvoyant” specification?
{True} new_coin() {c. 3bs. Coin(c, bs)}
{Coin(c, bs)} read_coin(c){b. 3bs’. bs = b :: bs’ A Coin(c, bs)}

{Coin(c, bs)} toss_coin(c){3b,bs’.bs = b :: bs’ A Coin(c, bs")}

10

One shot is not enough

Generalization: prophecy a sequence of resolutions!

{True}
NewProph
{p. 3bs. Proph®(p, bs)}

1"

One shot is not enough

Generalization: prophecy a sequence of resolutions!

{True}
NewProph

{p. 3bs. Proph®(p, bsu

Prophecy assertion now holds a list J

1"

One shot is not enough

Generalization: prophecy a sequence of resolutions!

{True}
NewProph

{p. 3bs. Proph®(p, bsu

{Proph®(p, bs)}
ResolveptoV
{3bs’.bs = v :: bs’ A Proph®(p, bs')}

Prophecy assertion now holds a list J

1"

One shot is not enough

Generalization: prophecy a sequence of resolutions!

{True} : .
NewProph Prophecy assertion now holds a list J

{p. 3bs. Proph®(p, bsv

{Proph®(p, bs)} { Resolving just pops one element

ResolveptoV /

{3bs’.bs = v :: bs’ A Proph®(p, bs')}

1

One shot is not enough

Generalization: prophecy a sequence of resolutions!

{True} : .
NewProph Prophecy assertion now holds a list J

{p. 3bs. Proph®(p, bsv

{Proph®(p, bs)} { Resolving just pops one element

ResolveptoV /

{3bs’.bs = v :: bs’ A Proph®(p, bs')}

One-shot prophecies can be encoded easily

1

Back to the clairvoyant coin example

Clairvoyant coin implementation:

() = let v = ref(nondet_bool());
{val = v, p = NewProph}

(c) £ !c.val

(c) £ 1et r = nondet_bool();
Resolvec.ptor;

cval «r

12

Back to the clairvoyant coin example

Clairvoyant coin implementation:
new_coin() £ let v = ref(nondet_bool());
{val = v, p = NewProph}

read_coin(c) £ ! c.val

toss_coin(C) £ let r = nondet_bool();
ResolvecC.ptor;

cval «r

The specification can be proved using:
Coin(c, bs) £ 3b,bs’. c.val — b A Proph®(p, bs')
Abs=b: bs

12

A glimpse at the model of weakest pre

Modified model of weakest preconditions (simplified):

wp e, {@} = if e, € Val then &(e,) else (return value)
\V/O"l, :‘2:1, /‘2{2. S((T‘], I;':fl -+ /‘?2) Ek
reducible(e,, ;) A (progress)

vez,o'z, éf ((61,01) —p (ez,Uz,é'f’ :‘:‘1)) 5’(

(preservation)
5(027 g2) * Wp e2 {é} * *eeé‘f Wp e {True}

S(o,7) Lleca ™ « IMN.ieN ™™ Adom(M) =02 (state interp.)
V{p < vs} € IN.vs = filter(p,)

13

A glimpse at the model of weakest pre

Modified model of weakest preconditions (simplified):

wp e, {@} = if e, € Val then &(e,) else (return value)
\V/O"l, :‘2:1, /‘2{2. S((T‘], I;':fl -+ /‘?2) Ek
reducible(e,, ;) A (progress)

vez,o'z, éf ((61,01) —p (ez,Uz,é'f’ :‘:‘1)) 5’(

(preservation)
S(02, 7o) xwp e, {P} * *eeEf wp e {True}

S(o,7) Lleca ™ « IMN.ieN ™™ Adom(M) 0.2 (state interp.)
V{p < vs} € N.vs = filker(p, <)

Reduction now collects
“observations”

13

A glimpse at the model of weakest pre

Modified model of weakest preconditions (simplified):

wp e, {@} = if e, € Val then &(e,) else (return value)
\V/O"l, :‘2:1, /‘2{2. S((T‘], I;':fl -+ /‘?2) Ek
reducible(e,, ;) A (progress)

vez,o'z, éf ((61,01) —p (ez,Uz,é'f’ :‘:‘1)) 5’(

(preservation)
S(02, 7o) xwp e, {P} * *eeEf wp e {True}

YHeaAp 4 TS “YPROPH

* JM. el Adom(M) & o2 A (state interp.)
V{p < vs} € N.vs = filker(p, <)

Observations yet Reduction now collects
to be made “observations”

13

Wrapping up!

Iris now has support for prophecy variables:

« First formal integration into a program logic
« Useful for logically atomic specifications (Ralf’s talk)

- But that's not the only application (see Frangois’s talk)

14

Wrapping up!

Iris now has support for prophecy variables:

« First formal integration into a program logic
« Useful for logically atomic specifications (Ralf’s talk)

- But that's not the only application (see Frangois’s talk)

Things there was no time for:

« Atomic resolution of prophecy variables
« Logically atomic spec for RDCSS and Herlihy-Wing queue
« Erasure theorem (elimination of ghost code)

14

Wrapping up!

Iris now has support for prophecy variables:

-h-ii -

« Erasure theorem (elimination of ghost code)

14

Thanks! Questions?

(For more details: https://iris-project.org)

https://iris-project.org

Model of weakest preconditions in Iris

Encoding of weakest preconditions (simplified):

wp e, {®#} £ if e, € Val then &(e,) else (return value)
\V/0'1.S(0'1) Ek
reducible(e,, 04) A (progress)

Ve,, 0a, é‘f~ ((31701) - (e2a02véf)) =k

(preservation)
S(02) * Wp €, {P} # XK,z Wp e {True}

o) Lieg " state interp.
S(c)2ieg!” (state interp.)

Some intuitions about the involved components:

« The state interpretation holds the state of the physical heap
+ View shifts P =k Q allow updates to owned resources

+ The actual definition uses the > P modality to avoid circularity
15

Operational semantics: head reduction and observations

We extend reduction rules with observations:

(n+m,o) = (N+m,o,¢¢€)
(ref(v),o) —h ({,0 W {l < v}, ¢€¢)
(L +—w, 0B {l <+ Vv}) = (¢, JU{€<—W} €, €)
(ork {e}) = ((),0,e 5 €,6)
(ResolveptoV,o) — ((),a,e, (p, V) ie)
(NewProph, o) 5 (P, {p},6,¢)

A couple of remarks:

 Observations are only recorded on resolutions
- State o now records the prophecy variables in scope

16

Extension for prophecy variables

Encoding of weakest preconditions (simplified):

wp e, {@} = if e, € Val then &(e,) else (return value)
\V/0'1, :‘2{1, /;{2. 5(0'1, E1 -+ /;{2) Ek
reducible(e,, 04) A (progress)

ve270-2; éf ((6170'1) — (e2502véf7 ‘;”“I)) Bk

K (preservation)
S(02,Ra) xwp e, {P} * >[<e€§f wp e {True}
= 17YPROPH

S(o,R) 2001 ™ « IMN.IeN ™™ Adom(N) =0.2A (state interp.)
V{p < vs} € IN.vs = filter(p,)

Some more intuitions about the involved components:

- State interpretation: holds observations yet to be made

+ Observations are removed from the list when taking steps
17

Statement of safety and adequacy

Safety with respect to a (pure) predicate:

Safe,(eq) = Ves, o, k. ([eq], @) =, (€2 :: €5,0,F)
= proper,(e,,o) A Ve € 5. properrye(e, o)
proper,(e,o) = (e € Val A ¢(e)) V reducible(e, o)

Theorem (adequacy). Let e be an expression and ¢ be a (pure)
predicate. If wp e {¢} is provable then Safe (e).

18

