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Why another proof assistant?

Proof assistants usually come with two languages:
- Formulas (e.g. specifications)
- Proof-terms (e.g. pure A-calculus)

- An optional proof construction language (e.g. tactics)
Our aim: build a programing language centered system
What about other systems?

- Coq: hidden proof-terms (use of tactics)

- Agda: proof-terms with a limited syntax (explicited directly)
- HOL light, HOL, Isabelle/HOL: no proof-terms
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The ingredients

Programming side:
- Full-featured ML-like language
- Evaluation strategy: call-by-value
- Curry-style language (no types in terms)

- Proofs are programs

Logic side:

Higher-order types

Classical logic

Program values are the individuals of the logic

Contain the equational theory of the programming language

Fixing the Model
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Example using the equational theory

type rec nat = [ Z[] | S[nat] 1

val rec (+) : nat => nat => nat =
fun m n -> match n with
| 2Z[1 ->m

| S[n'l -> S[m + n']

val rec assoc : l:nat => m:nat => n:nat => (1+m)+n == 1+(m+n) =
fun 1 m n -> match n with
| Z[1] -> show (1+m)+Z[] == 1+(m+Z[]);

show l+m == 1+m;
8<

| S[n'] -> show (1+m)+S[n'] == 1+(m+S[n'1);
show S[(l+m)+n'] == 14+S[m+n'];
show S[(l+m)+n'] == S[l+(m+n')];
show (l+m)+n' == 1+(m+n');

use (assoc L. m n'); 8<

Every “show ... == ...;” is only added for clarity
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Values and terms
Call-by-value A-calculus has two syntactic entities:

V,Ww = x| Axt
t,u == v]|tu

Remarks:
- Values are terms

- In call-by-name values and terms are collapsed

Why do we want a call-by-value language?
- Quantifiers are more symmetric
- Works well in practice (OCaml)

- Simon Peyton Jones regrets not using call-by-value for Haskell
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Going ML-like

We add case analysis, records and a fixpoint operator:

VW o= .. | C[v] | { 1'1'. =V e }

t,u == | Y(t,v)|v.l]casevof [ - Ci[x] — t;; =]
We enforce values in many places to simplify the calculus
We can define syntactic sugars:

C[t] == (W CIx]D t t.lo=(Axx. D)t
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Let's make the calculus classical

One possibility is to add a p binder (Ap-calculus):

t,u = «|pat]|txm

A
©
I

o | vem | [t]m

Stacks can be manipulated as first-class objects

Remarks:
- A stack can be seen as an evaluation context
- Intuition: it stores function arguments

- In call-by-value we need stack-frames ([t] 7)
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Summary of the syntax: Values, Terms, Stacks and Processes

viw = x| Mt [CIV - L= vy ) (AV)
tybu == v]tu|pxt|p]|Yt,v)|v.l]casevof[ ] (A)
T, P == a|v-m|[t]ln (TT)
PyS = txm (AXTT)

A process forms the internal state of a Krivine Machine

It can be thought of as a term in its environment
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Operational semantics - reduction relation

Call-by-value (3-reduction:

(tu)xmt —» ux[t]nw
vx[tlmt —» txvem

(Mxt)xv-m —» t[x « v]*m

Capturing and restoring the evaluation context:

(poct)xm > tla  ml*xm

PATT = P

There are also rules for projection, case analysis and the fixpoint operator

8/29



Introduction Calculus Types and semantics Typing rules Fixing the Model

Equivalence relation

Given a process p we write:
- plif Iv,Jax, p »* v
- p0 otherwise
Intuitively p | means that the evaluation of p is successful

We write t = u if Vr, txn & uxml

= is an equivalence relation over terms
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Type system

We start from System F:

We extend it to an ML-like system:

A,B =
| [ GlAg]; - ]
|l LA )
| uXaA
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Allowing formulas to talk about terms

We add four type constructors:
- t € A meaning “t is a term of type A”
- A [t =u meaning “A and t =’

- Vx A and 3x A quantifying over values

We also add n-ary predicates over terms:
A,B =
| Xty s t)
VX, A
X, A

The variables of System F can be seen as predicates of arity 0

Fixing the Model
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Full second-order type system

A,B = X (ty, -, ty)
| A=B
| VX, A | IX, A
I [ GlAGD; - ]
|l LA )
| XA
| VxA | dIxA
| teA
| ATt=u

It is possible to extend this type system to higher-order
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Semantics

We interpret terms and values as their equivalence classes
-vl=tweA,|v=w}
-Itl={ueA|t=u}

Raw semantics of formulas:
- [A = Bl = {MAt | Vv e [Al, tlx — vl € [BI}
- [VX, Al = 0, [ALX, & R
- [vx Al = n, 4 TADx V]I

[te Al={velAl|lv=t}

[ATt=ul] =[A]if t = u and @ otherwise

The set [A] is closed under = for all A (by construction)

Fixing the Model
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Pole, Falsity Values and Truth Values
We define a family of poles 1Ly ) :
Loy, oy, = (pl3iel,IveV,Tw=v,p » wxoy}

Properties of a pole 1:
- They are closed under (—»)_1
- And closed under (-»)

- If v¥kx € 1L and v = w then wxox € 1L

For every formula A we define:

[A]" = {mel|VvelAl,vkn € 1}

[A]™" = {teA|VmeAl, txme 1}
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Typing judgements and Adequation Lemma

We have two forms of typing judgements (collapsed in call-by-name):
N'=v:A 'Et:A

A context [ contain:
- Type assignments of the form x : A
- Type assignments of the form « : A"

- Equivalences / inequivalences of the formt =u / t £ u

TFv:A =+ve[A] FrFt:A = telAl""
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Adding adequate typing rules to the system

We can add any rule provided that it is adequate

Examples of adequate rules:

~ F,X:Al—t:B:}_ 'HFt:A =B rl—u:A#
Mx:AFx:A F'-Axt:A =B N-tu:B ’
I’,oc:/\ll—t:/\H F,oc:ALl—t:A
M- poct: A Mo:A Ftko:B
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Proof of adequacy of (:>e)

We suppose t' € [A = B] and u' € [B]
We need to show (') € [B]™

We take 7t € [B]" and show (t'u/)*7 € I
It is enough to show W [t']m € 1

It is enough to show [t']m € [B]"

We take v € [B] and show v*[t']m € L

It is enough to show t'*v.m € L

It is enough to show v. 7 € [A = Bl
We take Axm € [A = B] and show Axmx*v.m € 1L
It is enough to show m[x « v]xm e 1L

It is enough to show m[x « v] € 0:)
This is true by definition of [A = B]

Fixing the Model
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Rules of System F

'Ev:A y NEt:vVX, A y
TEv:VXA FEt:A[X, « P1

I'=t:A[X, « P, Mx:A[X, <« PJ]Ft:B
3 3

FEt:3x, A Mx:3X, A-t:B
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Records and case analysis

F'Evef« LA v Tyt Ay - _
rl_v'li:Ai ‘ FF{... 112\)1; ...}:{... li:Ai; ...}|

'Ev:A; .
FEClvl:[ = CIA; =1

Frbv:[« CI[A]; 1 « Nx:A,CIx]=vHEt:B
I'Fcasevof [« Cfx] — t;; - ]:B

Remark: equivalence in the premise of +,
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Quantification over individuals

r=v:A " 'Et:Vx A
TFv:Vx A MEt:Alx « v]
FI—t:A[va]al I‘,x:A[va]l—t:B3
FrFt:3Ix A NMx:3dy A-t:B
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Belonging and Restriction

''Ev:A Fl—tzve F,x:A,xzul—t:Be
F-v:teA ‘ NMx:ueAkt:B

Nx:A,uy=u;-t:C FEMw#uw) Tuy=uFt:A
Nx:Alu=urHt:C' FrFt:ATuy =4, v
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Dependent product

The usual dependent product TTx : AB can be encoded:
Tx : AB = Vx (x €A = B)

For instance the elimination rule

FEt:MoaB THviA-
I'tv:B[x « v]

e

can be derived:

FFt:Vx(xeAéB)v r'-veA .
Fkt:veA = Blx « v] FFVZVEA;
' (tv): B[x « v] ’
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Value restriction

In call-by-value with classical logic we need value restriction:

NEt:T0.,B FFV:AH
I'Ftv:B[x « v]

e

The following rule is not valid:

'Et:11,.,B Fl—u:An
I'tu:B[x « u]

e

We would like to have at least:

Ny=ukt:TI.,B I",yEuI—u:ATT
Nny=uktu:B[x« u]

e
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Derivation of TT,

Provided that we have:

r,t]Etzku:A[t]] r)t]Etzl_t]:A

r,t1Et2|_u:A[t2] ' r)t1

Etzl_tZ:A

We can derive the rule TT, on t using x = t:

N/
\ P / NMy=uku:A_
Ny=ukt:T.,B F,yzul—y:A:
Ny=ukty:Blx <yl
F,yzul—tu:B[xHy]:
NMy=ukttu:Bx—u]

1

N
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Required property of the model
We need = to be extensional:
-v=w = E[x « v] = E[x « w]

- t=u = E[t] = E[u]

We also need:

If ® C A, is closed under (=) then ® = O N A,
Direct consequence: v € [[/\]]LL = v e [Al

Remarks:
- ® C PN A, s trivial
- ® D d N A, is not true in general...
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Main idea (sufficient condition)

We add a new term (or instruction) to the syntax:
tyu = | 8(v,w)
With the reduction rule:
d(v,Wyxm - vxm if v#Ew
In the presence of 8(v, w) we will obtain

GDDNA,
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Proof

Recall the definitions:

O =fmeTl|Vved,vamen] O =fteA|Vned txme )

We consider @ C A, closed under (=) and show o n A,CO
We assume that v ¢ ® and show that v ¢ &
We need to find a stack 71, € ®* such that vk, ¢ L.
We need to find a stack 7, € TT such that:
-Vwed,wxmye 1L
- vk, € 1L
1y = [Axd(x, v)] « is such a stack
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A stratified model

Problem: (—») and (=) are interdependent...

For all i € N we define:

(»0) = ()
(»i1) = () U{6O, wrm, vem) | v # w)
(=) = {(t, u) | Vj<i,vmell, Vo, to*nuj & ua*nllj}

We then take:

(=) =U 1)
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Future work

Check the full details of the adequation lemma

Add subtyping

Make sure we have enough rules

Implementation:

Pseudo-algorithm for =

Hash-consing of the AST for efficiency

Type checking
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Thank you!
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