Introduction Calculus Types and semantics Typing rules Fixing the Model

Toward an Adequation Lemma for

PML2

LAMA

Rodolphe Lepigre - Montevideo - 03/12/2014

Introduction Calculus Types and semantics Typing rules Fixing the Model

Why another proof assistant?

Proof assistants usually come with two languages:
- Formulas (e.g. specifications)
- Proof-terms (e.g. pure A-calculus)

- An optional proof construction language (e.g. tactics)
Our aim: build a programing language centered system
What about other systems?

- Coq: hidden proof-terms (use of tactics)

- Agda: proof-terms with a limited syntax (explicited directly)
- HOL light, HOL, Isabelle/HOL: no proof-terms

1/29

Introduction Calculus Types and semantics Typing rules

The ingredients

Programming side:
- Full-featured ML-like language
- Evaluation strategy: call-by-value
- Curry-style language (no types in terms)

- Proofs are programs

Logic side:

Higher-order types

Classical logic

Program values are the individuals of the logic

Contain the equational theory of the programming language

Fixing the Model

2/29

Introduction Calculus Types and semantics Typing rules Fixing the Model

Example using the equational theory

type rec nat = [Z[] | S[nat] 1

val rec (+) : nat => nat => nat =
fun m n -> match n with
| 2Z[1 ->m

| S[n'l -> S[m + n']

val rec assoc : l:nat => m:nat => n:nat => (1+m)+n == 1+(m+n) =
fun 1 m n -> match n with
| Z[1] -> show (1+m)+Z[] == 1+(m+Z[]);

show l+m == 1+m;
8<

| S[n'] -> show (1+m)+S[n'] == 1+(m+S[n'1);
show S[(l+m)+n'] == 14+S[m+n'];
show S[(l+m)+n'] == S[l+(m+n')];
show (l+m)+n' == 1+(m+n');

use (assoc L. m n'); 8<

Every “show ... == ...;” is only added for clarity

3/29

Introduction Calculus Types and semantics Typing rules Fixing the Model

Values and terms
Call-by-value A-calculus has two syntactic entities:

V,Ww = x| Axt
t,u == v]|tu

Remarks:
- Values are terms

- In call-by-name values and terms are collapsed

Why do we want a call-by-value language?
- Quantifiers are more symmetric
- Works well in practice (OCaml)

- Simon Peyton Jones regrets not using call-by-value for Haskell

4/29

Introduction Calculus Types and semantics Typing rules Fixing the Model

Going ML-like

We add case analysis, records and a fixpoint operator:

VW o= .. | C[v] | { 1'1'. =V e }

t,u == | Y(t,v)|v.l]casevof [- Ci[x] — t;; =]
We enforce values in many places to simplify the calculus
We can define syntactic sugars:

C[t] == (W CIx]D t t.lo=(Axx. D)t

5/29

Introduction Calculus Types and semantics Typing rules Fixing the Model

Let's make the calculus classical

One possibility is to add a p binder (Ap-calculus):

t,u = «|pat]|txm

A
©
I

o | vem | [t]m

Stacks can be manipulated as first-class objects

Remarks:
- A stack can be seen as an evaluation context
- Intuition: it stores function arguments

- In call-by-value we need stack-frames ([t] 7)

6/29

Introduction Calculus Types and semantics Typing rules Fixing the Model

Summary of the syntax: Values, Terms, Stacks and Processes

viw = x| Mt [CIV - L= vy) (AV)
tybu == v]tu|pxt|p]|Yt,v)|v.l]casevof[] (A)
T, P == a|v-m|[t]ln (TT)
PyS = txm (AXTT)

A process forms the internal state of a Krivine Machine

It can be thought of as a term in its environment

7129

Introduction Calculus Types and semantics Typing rules Fixing the Model

Operational semantics - reduction relation

Call-by-value (3-reduction:

(tu)xmt —» ux[t]nw
vx[tlmt —» txvem

(Mxt)xv-m —» t[x « v]*m

Capturing and restoring the evaluation context:

(poct)xm > tla ml*xm

PATT = P

There are also rules for projection, case analysis and the fixpoint operator

8/29

Introduction Calculus Types and semantics Typing rules Fixing the Model

Equivalence relation

Given a process p we write:
- plif Iv,Jax, p »* v
- p0 otherwise
Intuitively p | means that the evaluation of p is successful

We write t = u if Vr, txn & uxml

= is an equivalence relation over terms

9/29

Introduction Calculus Types and semantics Typing rules Fixing the Model

Type system

We start from System F:

We extend it to an ML-like system:

A,B =
| [GlAg]; -]
|l LA)
| uXaA

10/29

Introduction Calculus Types and semantics Typing rules

Allowing formulas to talk about terms

We add four type constructors:
- t € A meaning “t is a term of type A”
- A [t =u meaning “A and t =’

- Vx A and 3x A quantifying over values

We also add n-ary predicates over terms:
A,B =
| Xty s t)
VX, A
X, A

The variables of System F can be seen as predicates of arity 0

Fixing the Model

11/29

Introduction Calculus Types and semantics Typing rules Fixing the Model

Full second-order type system

A,B = X (ty, -, ty)
| A=B
| VX, A | IX, A
I [GlAGD; -]
|l LA)
| XA
| VxA | dIxA
| teA
| ATt=u

It is possible to extend this type system to higher-order

12./29

Introduction Calculus Types and semantics Typing rules

Semantics

We interpret terms and values as their equivalence classes
-vl=tweA,|v=w}
-Itl={ueA|t=u}

Raw semantics of formulas:
- [A = Bl = {MAt | Vv e [Al, tlx — vl € [BI}
- [VX, Al = 0, [ALX, & R
- [vx Al = n, 4 TADx V]I

[te Al={velAl|lv=t}

[ATt=ul] =[A]if t = u and @ otherwise

The set [A] is closed under = for all A (by construction)

Fixing the Model

13/29

Introduction Calculus Types and semantics Typing rules Fixing the Model

Pole, Falsity Values and Truth Values
We define a family of poles 1Ly) :
Loy, oy, = (pl3iel,IveV,Tw=v,p » wxoy}

Properties of a pole 1:
- They are closed under (—»)_1
- And closed under (-»)

- If v¥kx € 1L and v = w then wxox € 1L

For every formula A we define:

[A]" = {mel|VvelAl,vkn € 1}

[A]™" = {teA|VmeAl, txme 1}

14/29

Introduction Calculus Types and semantics Typing rules Fixing the Model

Typing judgements and Adequation Lemma

We have two forms of typing judgements (collapsed in call-by-name):
N'=v:A 'Et:A

A context [contain:
- Type assignments of the form x : A
- Type assignments of the form « : A"

- Equivalences / inequivalences of the formt =u / t £ u

TFv:A =+ve[A] FrFt:A = telAl""

15/29

Introduction Calculus Types and semantics Typing rules Fixing the Model

Adding adequate typing rules to the system

We can add any rule provided that it is adequate

Examples of adequate rules:

~ F,X:Al—t:B:}_ 'HFt:A =B rl—u:A#
Mx:AFx:A F'-Axt:A =B N-tu:B ’
I’,oc:/\ll—t:/\H F,oc:ALl—t:A
M- poct: A Mo:A Ftko:B

16/29

Introduction Calculus Types and semantics Typing rules

Proof of adequacy of (:>e)

We suppose t' € [A = B] and u' € [B]
We need to show (') € [B]™

We take 7t € [B]" and show (t'u/)*7 € I
It is enough to show W [t']m € 1

It is enough to show [t']m € [B]"

We take v € [B] and show v*[t']m € L

It is enough to show t'*v.m € L

It is enough to show v. 7 € [A = Bl
We take Axm € [A = B] and show Axmx*v.m € 1L
It is enough to show m[x « v]xm e 1L

It is enough to show m[x « v] € 0:)
This is true by definition of [A = B]

Fixing the Model

17/29

Introduction Calculus Types and semantics Typing rules Fixing the Model

Rules of System F

'Ev:A y NEt:vVX, A y
TEv:VXA FEt:A[X, « P1

I'=t:A[X, « P, Mx:A[X, <« PJ]Ft:B
3 3

FEt:3x, A Mx:3X, A-t:B

18/29

Introduction Calculus Types and semantics Typing rules Fixing the Model

Records and case analysis

F'Evef« LA v Tyt Ay - _
rl_v'li:Ai ‘ FF{... 112\)1; ...}:{... li:Ai; ...}|

'Ev:A; .
FEClvl:[= CIA; =1

Frbv:[« CI[A]; 1 « Nx:A,CIx]=vHEt:B
I'Fcasevof [« Cfx] — t;; -]:B

Remark: equivalence in the premise of +,

19/29

Introduction

Calculus Types and semantics Typing rules Fixing the Model

Quantification over individuals

r=v:A " 'Et:Vx A
TFv:Vx A MEt:Alx « v]
FI—t:A[va]al I‘,x:A[va]l—t:B3
FrFt:3Ix A NMx:3dy A-t:B

20/29

Introduction Calculus Types and semantics Typing rules Fixing the Model

Belonging and Restriction

''Ev:A Fl—tzve F,x:A,xzul—t:Be
F-v:teA ‘ NMx:ueAkt:B

Nx:A,uy=u;-t:C FEMw#uw) Tuy=uFt:A
Nx:Alu=urHt:C' FrFt:ATuy =4, v

21/29

Introduction Calculus Types and semantics Typing rules Fixing the Model

Dependent product

The usual dependent product TTx : AB can be encoded:
Tx : AB = Vx (x €A = B)

For instance the elimination rule

FEt:MoaB THviA-
I'tv:B[x « v]

e

can be derived:

FFt:Vx(xeAéB)v r'-veA .
Fkt:veA = Blx « v] FFVZVEA;
' (tv): B[x « v] ’

2229

Introduction Calculus Types and semantics Typing rules Fixing the Model

Value restriction

In call-by-value with classical logic we need value restriction:

NEt:T0.,B FFV:AH
I'Ftv:B[x « v]

e

The following rule is not valid:

'Et:11,.,B Fl—u:An
I'tu:B[x « u]

e

We would like to have at least:

Ny=ukt:TI.,B I",yEuI—u:ATT
Nny=uktu:B[x« u]

e

23/29

Introduction Calculus Types and semantics Typing rules Fixing the Model

Derivation of TT,

Provided that we have:

r,t]Etzku:A[t]] r)t]Etzl_t]:A

r,t1Et2|_u:A[t2] ' r)t1

Etzl_tZ:A

We can derive the rule TT, on t using x = t:

N/
\ P / NMy=uku:A_
Ny=ukt:T.,B F,yzul—y:A:
Ny=ukty:Blx <yl
F,yzul—tu:B[xHy]:
NMy=ukttu:Bx—u]

1

N

24/29

Introduction Calculus Types and semantics Typing rules Fixing the Model

Required property of the model
We need = to be extensional:
-v=w = E[x « v] = E[x « w]

- t=u = E[t] = E[u]

We also need:

If ® C A, is closed under (=) then ® = O N A,
Direct consequence: v € [[/\]]LL = v e [Al

Remarks:
- ® C PN A, s trivial
- ® D d N A, is not true in general...

25/29

Introduction Calculus Types and semantics Typing rules Fixing the Model

Main idea (sufficient condition)

We add a new term (or instruction) to the syntax:
tyu = | 8(v,w)
With the reduction rule:
d(v,Wyxm - vxm if v#Ew
In the presence of 8(v, w) we will obtain

GDDNA,

26/29

Typing rules Fixing the Model

Introduction Calculus Types and semantics

Proof

Recall the definitions:

O =fmeTl|Vved,vamen] O =fteA|Vned txme)

We consider @ C A, closed under (=) and show o n A,CO
We assume that v ¢ ® and show that v ¢ &
We need to find a stack 71, € ®* such that vk, ¢ L.
We need to find a stack 7, € TT such that:
-Vwed,wxmye 1L
- vk, € 1L
1y = [Axd(x, v)] « is such a stack

27/29

Fixing the Model

Introduction Calculus Types and semantics Typing rules

A stratified model

Problem: (—») and (=) are interdependent...

For all i € N we define:

(»0) = ()
(»i1) = () U{6O, wrm, vem) | v # w)
(=) = {(t, u) | Vj<i,vmell, Vo, to*nuj & ua*nllj}

We then take:

(=) =U 1)

ieN

Introduction Calculus Types and semantics Typing rules Fixing the Model

Future work

Check the full details of the adequation lemma

Add subtyping

Make sure we have enough rules

Implementation:

Pseudo-algorithm for =

Hash-consing of the AST for efficiency

Type checking

29/29

Introduction Calculus Types and semantics Typing rules Fixing the Model

Thank you!

WWW.PATOLINE.ORG

	
	Introduction
	Calculus
	Types and semantics
	Typing rules
	Fixing the Model

