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PROOFS AND TYPED QUANTIFICATION

val rec addNZ : (n:N) = (add n Z = n) =
fun n —
match n with
| Z - {}
| S[k] — addNzZ k; {}

val rec addNSM : (n:N) = (m:N) = (add n S[m] = S[add n m]) =
fun nm —
match n with
| Z - {}
| S[k] — addNSM k m; {}

2/ 24



MIXING PROOFS AND PROGRAMS

3/ 24



MIXING PROOFS AND PROGRAMS

val rec addComm : (n:N) = (m:N) = (add nm = add m n) =
fun nm —
match n with
| z — addNZ m; {}
| S[kl] — addComm k m; addNSM m; {}

3/ 24



MIXING PROOFS AND PROGRAMS

val rec addComm : (n:N) = (m:N) = (add nm = add m n) =
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match n with
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MIXING PROOFS AND PROGRAMS

val rec addComm : (n:N) = (m:N) = (add nm = add m n) =
fun nm —
match n with
| z — addNZ m; {}
| S[kl] — addComm k m; addNSM m; {}

val add : (n:N) = (m:N) = N | (add nm = add m n) =
fun nm —

addComm n m; add n m

val add' : N = N = N = add
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CALL-BY-VALUE KRIVINE MACHINE
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EVALUATION IN THE MACHINE (1/2)

{(Li=vi), _plexm > vexm (keI

I*7 > ty[x=vi*m (keI
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EVALUATION IN THE MACHINE (2/2)
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EXAMPLES
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OBSERVATIONAL EQUIVALENCE OVER PROGRAMS

It is easy to quantify over evaluation contexts (i.e. stacks).

We define p{l as v, p >* vxe.

(=) =1{t,w |V, Vp,tpxmt] & up x|}

We quantify over substitutions to handle free variables.
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For all x, v, t we have (Ax.t) v = t[x:=V].
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EXAMPLE OF DERIVABLE EQUIVALENCES

For all x, v, t we have (Ax.t) v = t[x:=V].

(Axt) vipsm = (Ax.tp) vp*x 7
> vp * [Ax.tplm

> AXx.tpxvp. T

>

tplx =vp]x 7

(tix=v])p*xm
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MORE EQUIVALENCES: CANONICAL VALUES

Cylvid

Il
<
T

v = G Iwy] and v, = wy
{Li=w), p=v & v={li=w)_JandViel,v=w

MXt=v & v=Auand t = uly:=x]

10 / 24



VALUE INTERPRETATION OF TYPES

A type A is interpreted as a set of values [A].

We require [A] to be closed under (=).

We require o0 € [A].

We have [Ale{{ojCOPCA |vedPAW=vVv = we D}

(A, is the set of all the values.)
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VALUE INTERPRETATION OF PURE TYPES

[t:ay 3] = {{i=v), )} Ivielvie [Ad}uin)
[icci:a, J] = Ui (G T v e TAD U o)

[vX.A]l = Ny [AX:=d]]

[3X.A] = U, [AX:=d]]

[Va.Al = Ny A [Ala:=1]]

[Fa.A] = U, p[Ala:=1t]]
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FuNCTION TYPE AND TERMS

[A = B] = {Axw | Vve[Al,wlx:=v] € [B]} U {a}

What about programs that actually compute something?

We define a completion operation [A] — [AT"
The set [A]"" contains terms “behaving” as values of [A].

We can then take [A = B] = {MAx.t | Vv e[A], tix:=v] € [B]"} U (o}
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POLE AND ORTHOGONALITY
The definition of [A]"" is parametrised by a set 1. C AXTT.

Intuitively, 1 is a set of processes that “behave well”.

The set L ={p € AXIT|IveEA, p>* vxe}isa good choice.

[A]l € lOJCOCA |vedDAv=w =we b}
[A]" = {meTl|VvelAl,v*me 1}

[AT™ = {te A|Vrne[A]lY tsxme 1}
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TYPING JUDGMENTS AND ADEQUACY
There are two forms of judgments: = K, v:A and Z Ft:A.
The context = contains only equivalences of the form u; = u,.

Everything is closed (choice operator / witness presentation).

Adequacy for terms: if = F t : A is derivable and = is valid then [[t] € AT

Adequacy for values: if = I, v : A is derivable and = is valid then [v] € [A].

Since [A] C [A]"" we have the rule Zhav:A

1.
Fv:A

ong
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RATHER UsuAL TYPING RULES

El—t[x:zexeA(th)]:B# ZHt:A=B
ZhaMt:A=B '

ZHtu:

—
—

Ax

val exeA(t g B) tA
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RATHER UsuAL TYPING RULES

El—t[x::exeA(th)]:B# ZHt:A=B EI—u:Aé
ZhaMt:A=B ' ZFtu:B ’

Zhav:AX=ex(vEA) SEEIVXA
Z hav:VX.A ) SHt:AX:=B]
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[ATui=uw,] ={veA]lluw =ulufn}

u; = u, is defined as {} [ u; = w,.
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—_—
v:iveEA ZF excuen(tgB): C

SINGLETON AND TYPED QUANTIFICATION

[teAl ={ve[A]llt=vlu{g}

(a:A) = B is defined as Va.(a€A = B).

E) ngA(th) =ut ExeA(tg B) . C

e
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SINGLETON AND TYPED QUANTIFICATION

[teAl ={ve[A]llt=vlu{g}

(a:A) = B is defined as Va.(a€A = B).

vaIV:A c. E)ngA(th)Eul_ExeA(th):C

ViVEA ZF eveuen(t€B): C

e

Ftix=e,calt € Bla:=x])]: Bla=¢,ca(t ¢ Bla:=x])]

ZhyMt:(a:A) = B

ZFt:(a:A) =B

E Val\):A
ZkFtv:Bla=vV]
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A Classical Realizability Model for a Semantical Value Restriction (ESOP 2016).

A VIA . ZFt:A ZkFv=t

Z g V:iVvEA ZFHt:teA

i
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SEMANTICAL VALUE RESTRICTION

A Classical Realizability Model for a Semantical Value Restriction (ESOP 2016).

ZhHaVv:iA . ZFt:A EI—VE‘LE
ZhyV:iVvEA ZFHt:teA )
Having the rule —= Fv:iA | is enough.
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SEMANTICAL VALUE RESTRICTION

A Classical Realizability Model for a Semantical Value Restriction (ESOP 2016).

ZhHaVv:iA ZFt:A ZkFv=t
—_— S
Z g V:iVvEA ZFHt:teA

i

#i is enough.
A

Having the rule -
l_val v

o

Relaxed rules can be derived using (|), (T) and (=).
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THE NEW INSTRUCTION TRICK

The property [A]"" N A, C [A] is not true in every realizability model.

To obtain it we extend the system with a new term constructor 9, ,,

with the rule 9, ,, %7 > vx7m when v # w.

Idea of the proof:
- suppose v ¢ [A] and show v ¢ [AT"

- we need to find 7w such that vx 7w ¢ 1L and Vw e [A],wxm € 1,
- we can take 7 = [Ax.8,,l¢,

- v [AXO, e > Ax.dy kv.e > B, K€,

- W [AX0, Je > AxB kW e > 8, ke > WxE.
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We need to rely on a stratified construction of the two relations.

() = (DUGuxm vam [ 3j<i, v #w)

—~
112

B

N
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STRATIFIED REDUCTION AND EQUIVALENCE

The definitions of (>) and (=) are circular.

We need to rely on a stratified construction of the two relations.

() = (DUGuxm vam [ 3j<i, v #w)

—~
112

B

N

= {(t,u) | ngi,Vﬂeﬂ,Vp,tp*nt & up*TEUj}

We then take (=) = U, _y (1) and () = N, =0).
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COMPATIBLE EQUIVALENCE

—~
e
I

{(t,u) |IVieN,Vrell,Vp,tpxn|, & up*ﬂlli}

(=) = P U{G,wxm,vxm) | vEw

The relation (=) is “compatible” with (=).

In particular we have (=) C (=).
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COMPATIBLE EQUIVALENCE

O
|

= {(t,u) |IVieN,Vrell,Vp,tpxn|, & up*ﬂlli}

(=) = P U{G,wxm,vxm) | vEw

The relation (=) is “compatible” with (=).
In particular we have (=) C (=).

If for all 7t there is p such that t* 7w >* p and u* 7w >* p then t = u.
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Implementation of the system (in progress).
Inductive and coinductive types (in progress).
Recursion, termination checking (in progress).

PhD thesis (coming soon).

Compile PML programs (future work).

Mixing terminating / non-terminating programs (future work).
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Fin.



