
A Classical Realisability Model for PMLz

with Semantical Value Restriction

Inria Saclay 22/02/2017

Rodolphe Lepigre (rodolphe.lepigre@univ-smb.fr)

Programs and Proofs

1 / 24

Programs and Proofs

type rec N = [Z | S of N]

val rec add : N � N � N =

fun n m �

match n with

| Z � m

| S[k] � S[add k m]

1 / 24

Programs and Proofs

type rec N = [Z | S of N]

val rec add : N � N � N =

fun n m �

match n with

| Z � m

| S[k] � S[add k m]

val addZN : �n (add Z n � n) = {}

1 / 24

Programs and Proofs

type rec N = [Z | S of N]

val rec add : N � N � N =

fun n m �

match n with

| Z � m

| S[k] � S[add k m]

val addZN : �n (add Z n � n) = {}

// val addNZ : �n (add n Z � n) = ...

// Cannot be proved.

1 / 24

Proofs and Typed Quantification

2 / 24

Proofs and Typed Quantification

val rec addNZ : (n:N) � (add n Z � n) =

fun n �

match n with

| Z � {}

| S[k] � addNZ k; {}

2 / 24

Proofs and Typed Quantification

val rec addNZ : (n:N) � (add n Z � n) =

fun n �

match n with

| Z � {}

| S[k] � addNZ k; {}

val rec addNSM : (n:N) � (m:N) � (add n S[m] � S[add n m]) =

fun n m �

match n with

| Z � {}

| S[k] � addNSM k m; {}

2 / 24

Mixing Proofs and Programs

3 / 24

Mixing Proofs and Programs

val rec addComm : (n:N) � (m:N) � (add n m � add m n) =

fun n m �

match n with

| Z � addNZ m; {}

| S[k] � addComm k m; addNSM m; {}

3 / 24

Mixing Proofs and Programs

val rec addComm : (n:N) � (m:N) � (add n m � add m n) =

fun n m �

match n with

| Z � addNZ m; {}

| S[k] � addComm k m; addNSM m; {}

val add : (n:N) � (m:N) � N | (add n m � add m n) =

fun n m �

addComm n m; add n m

3 / 24

Mixing Proofs and Programs

val rec addComm : (n:N) � (m:N) � (add n m � add m n) =

fun n m �

match n with

| Z � addNZ m; {}

| S[k] � addComm k m; addNSM m; {}

val add : (n:N) � (m:N) � N | (add n m � add m n) =

fun n m �

addComm n m; add n m

val add' : N � N � N = add

3 / 24

Call-by-value Krivine Machine

w,v =:: �|]v[Ck|})vi=l i(
I�i

{|t.x�|x

u,t =:: � w,v|R t,v|F t,v|])t i�]x i[Ci(
I�i

|v[|lk.v|t]�[|t.	
|u t|v|a

�,� =:: �]t[|�.v|�|	

q,p =:: �
t

4 / 24

Evaluation in the Machine (1/2)

�
u t � �]t[
u

�]t[
v � �.v
t

�.v
t.x� � �
]v�x[t

�
t.	
 � �
]��	[t

�
t]�[� �
t

�
lk.})vi=l i(
I�i

{ � �
vk �I�k�

�
])t i�]x i[Ci(
I�i

|]v[Ck[� �
]v�xk[tk �I�k�

5 / 24

Evaluation in the Machine (2/2)

�.v
� � �
� x

�
l i.� � �
� x

�
])t i�]x i[Ci(
I�i

|�[� �
� x

�
F t,u.x� � �
t x

�
R t,})vi=l i(
I�i

{ � �
t x

6 / 24

Examples

�
]}{[C1ton = �
]}{[C1)]]}{[C1�]y[C0|]}{[C0�]y[C1|x[.x�(

� �]]]}{[C1�]y[C0|]}{[C0�]y[C1|x[.x�[
]}{[C1

� �.]}{[C1
]]}{[C1�]y[C0|]}{[C0�]y[C1|x[.x�

� �
]]}{[C1�]y[C0|]}{[C0�]y[C1|]}{[C1[

� �
]}{[C0

�
� = �
)x x.x�()x x.x�(

� �]x x.x�[
x x.x�

� �.x x.x�
x x.x�

� �
)x x.x�()x x.x�(

� �

7 / 24

Observational Equivalence over Programs

8 / 24

Observational Equivalence over Programs

It is easy to quantify over evaluation contexts (i.e. stacks).

8 / 24

Observational Equivalence over Programs

It is easy to quantify over evaluation contexts (i.e. stacks).

We de{ne p� as � v , p � v
 �.

8 / 24

Observational Equivalence over Programs

It is easy to quantify over evaluation contexts (i.e. stacks).

We de{ne p� as � v , p � v
 �.

� � � �� �� = t , u | � � , �� , t�
 � � � u�
 � �

8 / 24

Observational Equivalence over Programs

It is easy to quantify over evaluation contexts (i.e. stacks).

We de{ne p� as � v , p � v
 �.

� � � �� �� = t , u | � � , �� , t�
 � � � u�
 � �

We quantify over substitutions to handle free variables.

8 / 24

Example of Derivable Equivalences

9 / 24

Example of Derivable Equivalences

For all x , v, t we have (�x.t) v � t[x� v].

9 / 24

Example of Derivable Equivalences

For all x , v, t we have (�x.t) v � t[x� v].

�
�)v)t.x�((= �
�v)�t.x�(

� �]�t.x�[
�v

� �.�v
�t.x�

� �
]�v�x[�t

= �
�)]v�x[t(

9 / 24

More Equivalences: Canonical Values

v�x � x=v

v�� � �=v

v�]vk[Ck � wk�vkdna]wk[Ck=v

v�})vi=l i(
I�i

{ � wi�vi,I�i�dna})wi=l i(
I�i

{=v

v�t.x� �]x�y[u�tdnau.y�=v

10 / 24

Value Interpretation of Types

	
A type A is interpreted as a set of values A .

	
 � �We require A to be closed under � .

	
We require � � A .

	
 �� � �We have A � � � � � � | v � � � w � v � w � � .�

(� is the set of all the values.)�

11 / 24

Value Interpretation of Pure Types

�})Ai:l i(
I�i

{
 = �����
Ai
	�vi,I�i�|})vi=l i(

I�i
{�

�])Ai:Ci(
I�i

[
 = �����
Ai
	�v|]v[Ci�� I�i

A.X�	 =
]��X[A	��

A.X�	 =
]��X[A	��

A.a�	 =
]t�a[A	� ��t

A.a�	 =
]t�a[A	� ��t

12 / 24

Function Type and Terms

13 / 24

Function Type and Terms

	
 	
 	
� � � �A � B = �x.w | � v � A , w[x� v] � B � �

13 / 24

Function Type and Terms

	
 	
 	
� � � �A � B = �x.w | � v � A , w[x� v] � B � �

What about programs that actually compute something?

13 / 24

Function Type and Terms

	
 	
 	
� � � �A � B = �x.w | � v � A , w[x� v] � B � �

What about programs that actually compute something?

��	
 	
We de{ne a completion operation A � A .

13 / 24

Function Type and Terms

	
 	
 	
� � � �A � B = �x.w | � v � A , w[x� v] � B � �

What about programs that actually compute something?

��	
 	
We de{ne a completion operation A � A .

��	
 	
The set A contains terms |behaving} as values of A .

13 / 24

Function Type and Terms

	
 	
 	
� � � �A � B = �x.w | � v � A , w[x� v] � B � �

What about programs that actually compute something?

��	
 	
We de{ne a completion operation A � A .

��	
 	
The set A contains terms |behaving} as values of A .

��	
 	
 	
� � � �We can then take A � B = �x.t | � v � A , t[x� v] � B � �

13 / 24

Pole and Orthogonality

14 / 24

Pole and Orthogonality

��	
The de{nition of A is parametrised by a set � � �×�.

14 / 24

Pole and Orthogonality

��	
The de{nition of A is parametrised by a set � � �×�.

Intuitively, � is a set of processes that |behave well}.

14 / 24

Pole and Orthogonality

��	
The de{nition of A is parametrised by a set � � �×�.

Intuitively, � is a set of processes that |behave well}.

� �The set � = p � �×� | � v �� , p � v
 � is a good choice.�

14 / 24

Pole and Orthogonality

��	
The de{nition of A is parametrised by a set � � �×�.

Intuitively, � is a set of processes that |behave well}.

� �The set � = p � �×� | � v �� , p � v
 � is a good choice.�

A	 � ���w�w�v���v|� ��������

A	 � = ����
v,
A	�v�|����

A	 �� = ����
t,
A	 �
���|��t�

14 / 24

Typing judgments and adequacy

15 / 24

Typing judgments and adequacy

There are two forms of judgments: � � v : A and � � t : A .val

15 / 24

Typing judgments and adequacy

There are two forms of judgments: � � v : A and � � t : A .val

The context � contains only equivalences of the form u � u .1 2

15 / 24

Typing judgments and adequacy

There are two forms of judgments: � � v : A and � � t : A .val

The context � contains only equivalences of the form u � u .1 2

Everything is closed (choice operator / witness presentation).

15 / 24

Typing judgments and adequacy

There are two forms of judgments: � � v : A and � � t : A .val

The context � contains only equivalences of the form u � u .1 2

Everything is closed (choice operator / witness presentation).

��	
 	
Adequacy for terms: if � � t : A is derivable and � is valid then t � A .

15 / 24

Typing judgments and adequacy

There are two forms of judgments: � � v : A and � � t : A .val

The context � contains only equivalences of the form u � u .1 2

Everything is closed (choice operator / witness presentation).

��	
 	
Adequacy for terms: if � � t : A is derivable and � is valid then t � A .

	
 	
Adequacy for values: if � � v : A is derivable and � is valid then v � A .val

15 / 24

Typing judgments and adequacy

There are two forms of judgments: � � v : A and � � t : A .val

The context � contains only equivalences of the form u � u .1 2

Everything is closed (choice operator / witness presentation).

��	
 	
Adequacy for terms: if � � t : A is derivable and � is valid then t � A .

	
 	
Adequacy for values: if � � v : A is derivable and � is valid then v � A .val

�� � � v : Aval	
 	
 �Since A � A we have the rule .
� � v : A

15 / 24

Rather Usual Typing Rules

16 / 24

Rather Usual Typing Rules

� � t[x� � (t �B)] : B � � t : A � B � � u : Ax�A � �i e

� � �x.t : A � B � � t u : Bval

Ax

� � � (t �B) : Aval x�A

16 / 24

Rather Usual Typing Rules

� � t[x� � (t �B)] : B � � t : A � B � � u : Ax�A � �i e

� � �x.t : A � B � � t u : Bval

Ax

� � � (t �B) : Aval x�A

� �� � v : A � � v : {(l : A) } k � Ival i i val i ii �I i�I× ×i e

� � v.l : A� � {(l = v) } : {(l : A) } k kval i i i ii�I i�I

16 / 24

Rather Usual Typing Rules

� � t[x� � (t �B)] : B � � t : A � B � � u : Ax�A � �i e

� � �x.t : A � B � � t u : Bval

Ax

� � � (t �B) : Aval x�A

� �� � v : A � � v : {(l : A) } k � Ival i i val i ii �I i�I× ×i e

� � v.l : A� � {(l = v) } : {(l : A) } k kval i i i ii�I i�I

� � v : A[X� � (v �A)] � � t : �X.Aval X � �i e

� � v : �X.A � � t : A[X� B]val

16 / 24

Equivalence types

17 / 24

Equivalence types

	
 	
� � � �A � u � u = v � A | u � u � �1 2 1 2

u � u is de{ned as {} � u � u .1 2 1 2

17 / 24

Equivalence types

	
 	
� � � �A � u � u = v � A | u � u � �1 2 1 2

u � u is de{ned as {} � u � u .1 2 1 2

� � t : A � � u � u � , u � u � � (t �B) : C1 2 1 2 val x�A� �
i e

� � t : A � u � u � � � (t �B) : C1 2 val x�A �u �u1 2

17 / 24

Singleton and typed quantification

18 / 24

Singleton and typed quantification

	
 	
� � � �t�A = v � A | t � v � �

� �a : A � B is de{ned as �a.(a�A � B).

18 / 24

Singleton and typed quantification

	
 	
� � � �t�A = v � A | t � v � �

� �a : A � B is de{ned as �a.(a�A � B).

� � v : A � , � (t �B) � u � � (t �B) : Cval x�A x�A� �i e

� � v : v�A � � � (t �B) : Cval x�(u�A)

18 / 24

Singleton and typed quantification

	
 	
� � � �t�A = v � A | t � v � �

� �a : A � B is de{ned as �a.(a�A � B).

� � v : A � , � (t �B) � u � � (t �B) : Cval x�A x�A� �i e

� � v : v�A � � � (t �B) : Cval x�(u�A)

� � t[x� � (t �B[a� x])] : B[a� � (t �B[a� x])]x�A x�A

� �� � �x.t : a : A � Bval

� �� � t : a : A � B � � v : Aval

� � t v : B[a� v]

18 / 24

Equivalence Learning and Congruence

19 / 24

Equivalence Learning and Congruence

� �� � v : [(C : A)] � , v � C [� (t �C)] � t [x � � (t �C)] : Ci i i x �A i i i x �A ii i i ii�I i �I +e

� � [v | (C [x]� t)] : Ci i i i�I

19 / 24

Equivalence Learning and Congruence

� �� � v : [(C : A)] � , v � C [� (t �C)] � t [x � � (t �C)] : Ci i i x �A i i i x �A ii i i ii�I i �I +e

� � [v | (C [x]� t)] : Ci i i i�I

� � t : v�A � B � � v : Aval �e, �

� � t v : B

19 / 24

Equivalence Learning and Congruence

� �� � v : [(C : A)] � , v � C [� (t �C)] � t [x � � (t �C)] : Ci i i x �A i i i x �A ii i i ii�I i �I +e

� � [v | (C [x]� t)] : Ci i i i�I

� � t : v�A � B � � v : Aval �e, �

� � t v : B

� � t[a� u] : A[a� u] � � u � u1 1 1 2 �

� � t[a� u] : A[a� u]2 2

19 / 24

Semantical Value Restriction

20 / 24

Semantical Value Restriction

A Classical Realizability Model for a Semantical Value Restriction (ESOP 2016).

� � v : A � � t : A � � v � tval � �i i

� � v : v�A � � t : t�Aval

20 / 24

Semantical Value Restriction

A Classical Realizability Model for a Semantical Value Restriction (ESOP 2016).

� � v : A � � t : A � � v � tval � �i i

� � v : v�A � � t : t�Aval

� � v : A �Having the rule is enough.
� � v : Aval

20 / 24

Semantical Value Restriction

A Classical Realizability Model for a Semantical Value Restriction (ESOP 2016).

� � v : A � � t : A � � v � tval � �i i

� � v : v�A � � t : t�Aval

� � v : A �Having the rule is enough.
� � v : Aval

Relaxed rules can be derived using (�), (�) and (�).

20 / 24

The new instruction trick

21 / 24

The new instruction trick

��	
 	
The property A � � A is not true in every reali~ability model.�

21 / 24

The new instruction trick

��	
 	
The property A � � A is not true in every reali~ability model.�

To obtain it we extend the system with a new term constructor �v,w

with the rule �
� � v
� when v ! w.v,w

21 / 24

The new instruction trick

��	
 	
The property A � � A is not true in every reali~ability model.�

To obtain it we extend the system with a new term constructor �v,w

with the rule �
� � v
� when v ! w.v,w

Idea of the proof:
��	
 	
suppose v � A and show v � A ,

	
we need to {nd � such that v
 � � � and �w � A , w
 � � �,

we can take � = [�x.�]�,x,v

v
 [�x.�]� � �x.�
 v . � � �
 �,x,v x,v v,v

w
 [�x.�]� � �x.�
 w. � � �
 � � w
 �.x,v x,v w,v

21 / 24

Stratified reduction and equivalence

22 / 24

Stratified reduction and equivalence

� � � �The de{nitions of � and � are circular.

22 / 24

Stratified reduction and equivalence

� � � �The de{nitions of � and � are circular.

We need to rely on a strati{ed construction of the two relations.

��i� = �w!
j

v,i<j�|��
v,�
� w,v������

�"i� = ��
j

�
�u��
j

�
�t,��,����,i#j�|�u,t��

22 / 24

Stratified reduction and equivalence

� � � �The de{nitions of � and � are circular.

We need to rely on a strati{ed construction of the two relations.

� � � � � � � �We then take � = � and " = " .i� �i i ��i ��

��i� = �w!
j

v,i<j�|��
v,�
� w,v������

�"i� = ��
j

�
�u��
j

�
�t,��,����,i#j�|�u,t��

22 / 24

Compatible equivalence

�"� = ��
i

�
�u��
i

�
�t,��,����,��i�|�u,t��

��� = �w$v|��
v,�
� w,v������

23 / 24

Compatible equivalence

� � � �The relation " is |compatible} with � .

�"� = ��
i

�
�u��
i

�
�t,��,����,��i�|�u,t��

��� = �w$v|��
v,�
� w,v������

23 / 24

Compatible equivalence

� � � �The relation " is |compatible} with � .

� � � �In particular we have " � � .

�"� = ��
i

�
�u��
i

�
�t,��,����,��i�|�u,t��

��� = �w$v|��
v,�
� w,v������

23 / 24

Compatible equivalence

� � � �The relation " is |compatible} with � .

� � � �In particular we have " � � .

If for all � there is p such that t
 � � p and u
 � � p then t " u .

�"� = ��
i

�
�u��
i

�
�t,��,����,��i�|�u,t��

��� = �w$v|��
v,�
� w,v������

23 / 24

Work in progress and future work

24 / 24

Work in progress and future work

Implementation of the system (in progress).

Inductive and coinductive types (in progress).

Recursion, termination checking (in progress).

24 / 24

Work in progress and future work

Implementation of the system (in progress).

Inductive and coinductive types (in progress).

Recursion, termination checking (in progress).

Compile PML programs (future work).

Mixing terminating / non-terminating programs (future work).

24 / 24

Work in progress and future work

Implementation of the system (in progress).

Inductive and coinductive types (in progress).

Recursion, termination checking (in progress).

PhD thesis (coming soon).

Compile PML programs (future work).

Mixing terminating / non-terminating programs (future work).

24 / 24

Fin.

