A Classical Realisability Model for PML,

with Semantical Value Restriction

|~ .
== | UNIVERSITE
SAVOIE
MONT BLANC
Inria Saclay 22/02/2017

Rodolphe Lepigre (rodolphe.lepigre@univ-smb.fr)

PROGRAMS AND PROOFS

1/ 24

PROGRAMS AND PROOFS

type rec N=[Z | S of N]
val rec add : N = N = N =
fun nm —
match n with
| z — m
| S[k] — S[add k m]

1/ 24

PROGRAMS AND PROOFS

type rec N=[Z | S of N]
val rec add : N = N = N =
fun nm —
match n with
| z — m
| S[k] — S[add k m]

val addZN : vn (add Z n = n) = {}

1/ 24

PROGRAMS AND PROOFS

type rec N=[Z | S of N]
val rec add : N = N = N =
fun nm —
match n with
| z — m
| S[k] — S[add k m]

val addZN : vn (add Z n = n) = {}

1/ 24

PROOFS AND TYPED QUANTIFICATION

2/ 24

PROOFS AND TYPED QUANTIFICATION

val rec addNZ : (n:N) = (add n Z = n) =
fun n —
match n with
| Z - {}
| S[k] — addNzZ k; {}

2/ 24

PROOFS AND TYPED QUANTIFICATION

val rec addNZ : (n:N) = (add n Z = n) =
fun n —
match n with
| Z - {}
| S[k] — addNzZ k; {}

val rec addNSM : (n:N) = (m:N) = (add n S[m] = S[add n m]) =
fun nm —
match n with
| Z - {}
| S[k] — addNSM k m; {}

2/ 24

MIXING PROOFS AND PROGRAMS

3/ 24

MIXING PROOFS AND PROGRAMS

val rec addComm : (n:N) = (m:N) = (add nm = add m n) =
fun nm —
match n with
| z — addNZ m; {}
| S[kl] — addComm k m; addNSM m; {}

3/ 24

MIXING PROOFS AND PROGRAMS

val rec addComm : (n:N) = (m:N) = (add nm = add m n) =
fun nm —
match n with
| z — addNZ m; {}
| S[kl] — addComm k m; addNSM m; {}

val add : (n:N) = (m:N) = N | (add nm = add m n) =

fun nm —

addComm n m; add n m

3/ 24

MIXING PROOFS AND PROGRAMS

val rec addComm : (n:N) = (m:N) = (add nm = add m n) =
fun nm —
match n with
| z — addNZ m; {}
| S[kl] — addComm k m; addNSM m; {}

val add : (n:N) = (m:N) = N | (add nm = add m n) =
fun nm —

addComm n m; add n m

val add' : N = N = N = add

3/ 24

CALL-BY-VALUE KRIVINE MACHINE

x [Axt [{(Li=wv), _J | Gl | o

iel

alvltulpet |t | vl | W](Clx] -t

x|lelv.m|[tn

txT

| F\"l ‘ R\',l ‘ b

v,w

4] 24

EVALUATION IN THE MACHINE (1/2)

{(Li=vi), _plexm > vexm (keI

I*7 > ty[x=vi*m (keI

5/ 24

EVALUATION IN THE MACHINE (2/2)

0% 7t

O % 7T

tx7

tx7m

6/ 24

EXAMPLES

not Ci[{lxe = (Ax.[x|Cilyl — Col{}1 | Colyl = G} Ci[{} x ¢
G * I [x [Cily]l = Col{(}] 1 Colyl — Gi{}N]e
M. [x | Gyl = Colll] | Colyl = GI} * G} . e
(G Cilyl = Col{H 1 Colyl — G} * ¢

Col{yl x ¢

Y Y Y VY

Qx¢ (Ax.x x) (Ax.x x) *x ¢
AX.X X % [Ax.x x]e
AXX X X AX.X X . €

(Ax.x x) (Ax.x x) x¢

Y Y Y VY

7 | 24

OBSERVATIONAL EQUIVALENCE OVER PROGRAMS

8/ 24

OBSERVATIONAL EQUIVALENCE OVER PROGRAMS

It is easy to quantify over evaluation contexts (i.e. stacks).

8/ 24

OBSERVATIONAL EQUIVALENCE OVER PROGRAMS

It is easy to quantify over evaluation contexts (i.e. stacks).

We define p{l as v, p >* vxe.

8/ 24

OBSERVATIONAL EQUIVALENCE OVER PROGRAMS

It is easy to quantify over evaluation contexts (i.e. stacks).

We define p{l as v, p >* vxe.

(=) =1{t,w |V, Vp,tpxmt] & up x|}

8/ 24

OBSERVATIONAL EQUIVALENCE OVER PROGRAMS

It is easy to quantify over evaluation contexts (i.e. stacks).

We define p{l as v, p >* vxe.

(=) =1{t,w |V, Vp,tpxmt] & up x|}

We quantify over substitutions to handle free variables.

8/ 24

EXAMPLE OF DERIVABLE EQUIVALENCES

9/ 24

EXAMPLE OF DERIVABLE EQUIVALENCES

For all x, v, t we have (Ax.t) v = t[x:=V].

9/ 24

EXAMPLE OF DERIVABLE EQUIVALENCES

For all x, v, t we have (Ax.t) v = t[x:=V].

(Axt) vipsm = (Ax.tp) vp*x 7
> vp * [Ax.tplm

> AXx.tpxvp. T

>

tplx =vp]x 7

(tix=v])p*xm

9/ 24

MORE EQUIVALENCES: CANONICAL VALUES

Cylvid

Il
<
T

v = G Iwy] and v, = wy
{Li=w), p=v & v={li=w)_JandViel,v=w

MXt=v & v=Auand t = uly:=x]

10 / 24

VALUE INTERPRETATION OF TYPES

A type A is interpreted as a set of values [A].

We require [A] to be closed under (=).

We require o0 € [A].

We have [Ale{{ojCOPCA |vedPAW=vVv = we D}

(A, is the set of all the values.)

11 / 24

VALUE INTERPRETATION OF PURE TYPES

[t:ay 3] = {{i=v),)} Ivielvie [Ad}uin)
[icci:a, J] = Ui (G T v e TAD U o)

[vX.A]l = Ny [AX:=d]]

[3X.A] = U, [AX:=d]]

[Va.Al = Ny A [Ala:=1]]

[Fa.A] = U, p[Ala:=1t]]

12 | 24

FuNCTION TYPE AND TERMS

13 / 24

FuNCTION TYPE AND TERMS

[A = B] = {Axw | Vve[Al,wlx:=v] € [B]} U {a}

13 / 24

FuNCTION TYPE AND TERMS

[A = B] = {Axw | Vve[Al,wlx:=v] € [B]} U {a}

What about programs that actually compute something?

13 / 24

FuNCTION TYPE AND TERMS

[A = B] = {Axw | Vve[Al,wlx:=v] € [B]} U {a}

What about programs that actually compute something?

We define a completion operation [A] — [AT"

13 / 24

FuNCTION TYPE AND TERMS

[A = B] = {Axw | Vve[Al,wlx:=v] € [B]} U {a}

What about programs that actually compute something?

We define a completion operation [A] — [AT"

The set [A]"" contains terms “behaving” as values of [A].

13 / 24

FuNCTION TYPE AND TERMS

[A = B] = {Axw | Vve[Al,wlx:=v] € [B]} U {a}

What about programs that actually compute something?

We define a completion operation [A] — [AT"
The set [A]"" contains terms “behaving” as values of [A].

We can then take [A = B] = {MAx.t | Vv e[A], tix:=v] € [B]"} U (o}

13 / 24

POLE AND ORTHOGONALITY

14 | 24

POLE AND ORTHOGONALITY

The definition of [A]"" is parametrised by a set 1. C AXTT.

14 | 24

POLE AND ORTHOGONALITY
The definition of [A]"" is parametrised by a set 1. C AXTT.

Intuitively, 1 is a set of processes that “behave well”.

14 | 24

POLE AND ORTHOGONALITY
The definition of [A]"" is parametrised by a set 1. C AXTT.
Intuitively, 1 is a set of processes that “behave well”.

The set L ={p € AXIT|IveEA, p>* vxe}isa good choice.

14 | 24

POLE AND ORTHOGONALITY
The definition of [A]"" is parametrised by a set 1. C AXTT.

Intuitively, 1 is a set of processes that “behave well”.

The set L ={p € AXIT|IveEA, p>* vxe}isa good choice.

[A]l € lOJCOCA |vedDAv=w =we b}
[A]" = {meTl|VvelAl,v*me 1}

[AT™ = {te A|Vrne[A]lY tsxme 1}

14 | 24

TYPING JUDGMENTS AND ADEQUACY

15 / 24

TYPING JUDGMENTS AND ADEQUACY

There are two forms of judgments: = K, v:A and Z Ft:A.

15 / 24

TYPING JUDGMENTS AND ADEQUACY

There are two forms of judgments: = K, v:A and Z Ft:A.

The context = contains only equivalences of the form u; = u,.

15 / 24

TYPING JUDGMENTS AND ADEQUACY

There are two forms of judgments: = K, v:A and Z Ft:A.
The context = contains only equivalences of the form u; = u,.

Everything is closed (choice operator / witness presentation).

15 / 24

TYPING JUDGMENTS AND ADEQUACY

There are two forms of judgments: = K, v:A and Z Ft:A.
The context = contains only equivalences of the form u; = u,.

Everything is closed (choice operator / witness presentation).

Adequacy for terms: if = F t : A is derivable and = is valid then [[t] € AT

15 / 24

TYPING JUDGMENTS AND ADEQUACY

There are two forms of judgments: = K, v:A and Z Ft:A.
The context = contains only equivalences of the form u; = u,.

Everything is closed (choice operator / witness presentation).

Adequacy for terms: if = F t : A is derivable and = is valid then [[t] € AT

Adequacy for values: if = I, v : A is derivable and = is valid then [v] € [A].

15 / 24

TYPING JUDGMENTS AND ADEQUACY
There are two forms of judgments: = K, v:A and Z Ft:A.
The context = contains only equivalences of the form u; = u,.

Everything is closed (choice operator / witness presentation).

Adequacy for terms: if = F t : A is derivable and = is valid then [[t] € AT

Adequacy for values: if = I, v : A is derivable and = is valid then [v] € [A].

Since [A] C [A]"" we have the rule Zhav:A

1.
Fv:A

ong

15 / 24

RATHER UsuAL TYPING RULES

16 | 24

RATHER UsuAL TYPING RULES

El—t[x:zexeA(th)]:B# ZHt:A=B
ZhaMt:A=B '

ZHtu:

—
—

Ax

val exeA(t g B) tA

16 | 24

RATHER UsuAL TYPING RULES

El—t[x::exeA(th)]:B# ZHt:A=B EI—u:Aé
ZhaMt:A=B ' ZFtu:B ’

zF V.lk . Ak ’

16 | 24

RATHER UsuAL TYPING RULES

El—t[x::exeA(th)]:B# ZHt:A=B EI—u:Aé
ZhaMt:A=B ' ZFtu:B ’

Zhav:AX=ex(vEA) SEEIVXA
Z hav:VX.A) SHt:AX:=B]

16 | 24

EQUIVALENCE TYPES

17 | 24

EQUIVALENCE TYPES

[ATui=uw,] ={veA]lluw =ulufn}

u; = u, is defined as {} [u; = w,.

17 | 24

EQUIVALENCE TYPES

[ATui=uw,] ={veA]lluw =ulufn}

u; = u, is defined as {} [u; = w,.

ZHEt:A ZRFu =u; Zou = U ky eealt€B): C
= FJ[:’AI\LHELLZ ’ bal EXEA[u]EuZ(th) :C

~
|

[

17 | 24

SINGLETON AND TYPED QUANTIFICATION

18 |/ 24

SINGLETON AND TYPED QUANTIFICATION

[teAl ={ve[A]llt=vlu{g}

(a:A) = B is defined as Va.(a€A = B).

18 |/ 24

—_—
v:iveEA ZF excuen(tgB): C

SINGLETON AND TYPED QUANTIFICATION

[teAl ={ve[A]llt=vlu{g}

(a:A) = B is defined as Va.(a€A = B).

E) ngA(th) =ut ExeA(tg B) . C

e

18 |/ 24

SINGLETON AND TYPED QUANTIFICATION

[teAl ={ve[A]llt=vlu{g}

(a:A) = B is defined as Va.(a€A = B).

vaIV:A c. E)ngA(th)Eul_ExeA(th):C

ViVEA ZF eveuen(t€B): C

e

Ftix=e,calt € Bla:=x])]: Bla=¢,ca(t ¢ Bla:=x])]

ZhyMt:(a:A) = B

ZFt:(a:A) =B

E Val\):A
ZkFtv:Bla=vV]

18 |/ 24

EQUIVALENCE LEARNING AND CONGRUENCE

19 [24

EQUIVALENCE LEARNING AND CONGRUENCE

EEvil(CrAY,) (E,v = Cleqenti £ O F tilxi= e (ti £ C)) 1 C)

iEI+
=F W] (Cilxd —t)_1:C

iel

e

iel

19 / 24

EQUIVALENCE LEARNING AND CONGRUENCE

EEvil(CrAY,) (E,v = Cleqenti £ O F tilxi= e (ti £ C)) 1 C)

iEI+
=F W] (Cilxd —t)_1:C

iel

e

iel

ZFHt:veA=B = Valv:A:>
Z=Htv:B

19 / 24

kv

[(Ci:AY)

EQUIVALENCE LEARNING AND CONGRUENCE

iel

(2,v = Cleyen(ti £ F tilxii= e, en(t: £C)) : C),

e

161+
=F W (Cilxd —ty).]:C

iel

[

Ft:veA=B = Valv:A:>
Z=Htv:B

19 / 24

SEMANTICAL VALUE RESTRICTION

20/ 24

SEMANTICAL VALUE RESTRICTION

A Classical Realizability Model for a Semantical Value Restriction (ESOP 2016).

A VIA . ZFt:A ZkFv=t

Z g V:iVvEA ZFHt:teA

i

20/ 24

SEMANTICAL VALUE RESTRICTION

A Classical Realizability Model for a Semantical Value Restriction (ESOP 2016).

ZhHaVv:iA . ZFt:A EI—VE‘LE
ZhyV:iVvEA ZFHt:teA)
Having the rule —= Fv:iA | is enough.

ZhkaVv:iA

20/ 24

SEMANTICAL VALUE RESTRICTION

A Classical Realizability Model for a Semantical Value Restriction (ESOP 2016).

ZhHaVv:iA ZFt:A ZkFv=t
—_— S
Z g V:iVvEA ZFHt:teA

i

#i is enough.
A

Having the rule -
l_val v

o

Relaxed rules can be derived using (|), (T) and (=).

20/ 24

THE NEW INSTRUCTION TRICK

21/ 24

THE NEW INSTRUCTION TRICK

The property [A]"" N A, C [A] is not true in every realizability model.

21/ 24

THE NEW INSTRUCTION TRICK

The property [A]"" N A, C [A] is not true in every realizability model.

To obtain it we extend the system with a new term constructor 9, ,,

with the rule 9, ,, %7 > vx7m when v # w.

21/ 24

THE NEW INSTRUCTION TRICK

The property [A]"" N A, C [A] is not true in every realizability model.

To obtain it we extend the system with a new term constructor 9, ,,

with the rule 9, ,, %7 > vx7m when v # w.

Idea of the proof:
- suppose v ¢ [A] and show v ¢ [AT"

- we need to find 7w such that vx 7w ¢ 1L and Vw e [A],wxm € 1,
- we can take 7 = [Ax.8,,l¢,

- v [AXO, e > Ax.dy kv.e > B, K€,

- W [AX0, Je > AxB kW e > 8, ke > WxE.

21/ 24

STRATIFIED REDUCTION AND EQUIVALENCE

22 [24

STRATIFIED REDUCTION AND EQUIVALENCE

The definitions of (>) and (=) are circular.

22 [24

STRATIFIED REDUCTION AND EQUIVALENCE

The definitions of (>) and (=) are circular.

We need to rely on a stratified construction of the two relations.

() = (DUGuxm vam [3j<i, v #w)

—~
112

B

N

= {(t,u) | ngi,Vﬂeﬂ,Vp,tp*nt & up*TEUj}

22 [24

STRATIFIED REDUCTION AND EQUIVALENCE

The definitions of (>) and (=) are circular.

We need to rely on a stratified construction of the two relations.

() = (DUGuxm vam [3j<i, v #w)

—~
112

B

N

= {(t,u) | ngi,Vﬂeﬂ,Vp,tp*nt & up*TEUj}

We then take (=) = U, _y (1) and () = N, =0).

22 [24

COMPATIBLE EQUIVALENCE

{(t,u) |IVieN,Vrell,Vp,tpxn|, & up*ﬂlli}

) Ul wxm,vEm) [v E W)

23 [24

COMPATIBLE EQUIVALENCE

{(t,u) |IVieN,Vrell,Vp,tpxn|, & up*ﬂlli}

) Ul wxm,vEm) [v E W)

The relation (=) is “compatible” with (=).

23 [24

COMPATIBLE EQUIVALENCE

—~
e
I

{(t,u) |IVieN,Vrell,Vp,tpxn|, & up*ﬂlli}

(=) = P U{G,wxm,vxm) | vEw

The relation (=) is “compatible” with (=).

In particular we have (=) C (=).

23 [24

COMPATIBLE EQUIVALENCE

O
|

= {(t,u) |IVieN,Vrell,Vp,tpxn|, & up*ﬂlli}

(=) = P U{G,wxm,vxm) | vEw

The relation (=) is “compatible” with (=).
In particular we have (=) C (=).

If for all 7t there is p such that t* 7w >* p and u* 7w >* p then t = u.

23 [24

WORK IN PROGRESS AND FUTURE WORK

24 | 24

WORK IN PROGRESS AND FUTURE WORK

Implementation of the system (in progress).
Inductive and coinductive types (in progress).

Recursion, termination checking (in progress).

24 | 24

WORK IN PROGRESS AND FUTURE WORK

Implementation of the system (in progress).
Inductive and coinductive types (in progress).

Recursion, termination checking (in progress).

Compile PML programs (future work).

Mixing terminating / non-terminating programs (future work).

24 | 24

WORK IN PROGRESS AND FUTURE WORK

Implementation of the system (in progress).
Inductive and coinductive types (in progress).
Recursion, termination checking (in progress).

PhD thesis (coming soon).

Compile PML programs (future work).

Mixing terminating / non-terminating programs (future work).

24 | 24

Fin.

