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type rec N = [ Z | S of N ]

val rec add : N � N � N =

fun n m �

match n with

| Z � m

| S[k] � S[add k m]

val addZN : �n (add Z n � n) = {}

// val addNZ : �n (add n Z � n) = ...

// Cannot be proved.
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Proofs and Typed Quantification

val rec addNZ : (n:N) � (add n Z � n) =

fun n �

match n with

| Z � {}

| S[k] � addNZ k; {}

val rec addNSM : (n:N) � (m:N) � (add n S[m] � S[add n m]) =

fun n m �

match n with

| Z � {}

| S[k] � addNSM k m; {}
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Mixing Proofs and Programs

val rec addComm : (n:N) � (m:N) � (add n m � add m n) =

fun n m �

match n with

| Z � addNZ m; {}

| S[k] � addComm k m; addNSM m; {}

val add : (n:N) � (m:N) � N | (add n m � add m n) =

fun n m �

addComm n m; add n m

val add' : N � N � N = add
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Call-by-value Krivine Machine
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Evaluation in the Machine (1/2)
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Evaluation in the Machine (2/2)
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Observational Equivalence over Programs

It is easy to quantify over evaluation contexts (i.e. stacks).


We de{ne p� as � v , p � v 
 �.

� � � �� �� = t , u | � � , �� , t� 
 � � � u� 
 � �

We quantify over substitutions to handle free variables.
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More Equivalences: Canonical Values

v�x � x=v
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Value Interpretation of Types

	 
A type A is interpreted as a set of values A .

	 
 � �We require A to be closed under � .

	 
We require � � A .

	 
 �� � �We have A � � � � � � | v � � � w � v � w � � .�

(� is the set of all the values.)�
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Value Interpretation of Pure Types
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� � � �A � B = �x.w | � v � A , w[x� v] � B � �

What about programs that actually compute something?

��	 
 	 
We de{ne a completion operation A � A .

��	 
 	 
The set A contains terms |behaving} as values of A .

��	 
 	 
 	 
� � � �We can then take A � B = �x.t | � v � A , t[x� v] � B � �
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Pole and Orthogonality

��	 
The de{nition of A is parametrised by a set � � �×�.

Intuitively, � is a set of processes that |behave well}.


� �The set � = p � �×� | � v �� , p � v 
 � is a good choice.�


A	 � ���w�w�v���v|� ��������


A	 � = ����
v,
A	�v�|����


A	 �� = ����
t,
A	 �
���|��t�
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Typing judgments and adequacy

There are two forms of judgments: � � v : A and � � t : A .val

The context � contains only equivalences of the form u � u .1 2

Everything is closed (choice operator / witness presentation).

��	 
 	 
Adequacy for terms: if � � t : A is derivable and � is valid then t � A .

	 
 	 
Adequacy for values: if � � v : A is derivable and � is valid then v � A .val

�� � � v : Aval	 
 	 
 �Since A � A we have the rule .
� � v : A
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Rather Usual Typing Rules

� � t[x� � (t �B)] : B � � t : A � B � � u : Ax�A � �i e

� � �x.t : A � B � � t u : Bval

Ax

� � � (t �B) : Aval x�A

� �� � v : A � � v : {(l : A ) } k � Ival i i val i ii �I i�I× ×i e

� � v.l : A� � {(l = v ) } : {(l : A ) } k kval i i i ii�I i�I

� � v : A[X� � (v �A)] � � t : �X.Aval X � �i e

� � v : �X.A � � t : A[X� B]val
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Equivalence types

	 
 	 
� � � �A � u � u = v � A | u � u � �1 2 1 2

u � u is de{ned as {} � u � u .1 2 1 2

� � t : A � � u � u � , u � u � � (t �B) : C1 2 1 2 val x�A� �
i e

� � t : A � u � u � � � (t �B) : C1 2 val x�A �u �u1 2
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Singleton and typed quantification

	 
 	 
� � � �t�A = v � A | t � v � �

� �a : A � B is de{ned as �a.(a�A � B).

� � v : A � , � (t �B) � u � � (t �B) : Cval x�A x�A� �i e

� � v : v�A � � � (t �B) : Cval x�(u�A)

� � t[x� � (t �B[a� x])] : B[a� � (t �B[a� x])]x�A x�A

� �� � �x.t : a : A � Bval

� �� � t : a : A � B � � v : Aval

� � t v : B[a� v]
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� �� � v : [(C : A ) ] � , v � C [� (t �C)] � t [x � � (t �C)] : Ci i i x �A i i i x �A ii i i ii�I i �I +e

� � [v | (C [x ]� t ) ] : Ci i i i�I

� � t : v�A � B � � v : Aval �e, �

� � t v : B

� � t[a� u ] : A[a� u ] � � u � u1 1 1 2 �

� � t[a� u ] : A[a� u ]2 2
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Semantical Value Restriction

A Classical Realizability Model for a Semantical Value Restriction (ESOP 2016).
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Semantical Value Restriction

A Classical Realizability Model for a Semantical Value Restriction (ESOP 2016).

� � v : A � � t : A � � v � tval � �i i

� � v : v�A � � t : t�Aval

� � v : A �Having the rule is enough.
� � v : Aval

Relaxed rules can be derived using (�), (�) and (�).
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The new instruction trick

��	 
 	 
The property A  � � A is not true in every reali~ability model.�

To obtain it we extend the system with a new term constructor �v,w

with the rule � 
� � v 
� when v ! w.v,w

Idea of the proof:
��	 
 	 
suppose v � A and show v � A ,

	 
we need to {nd � such that v 
 � � � and �w � A , w 
 � � �,

we can take � = [�x.� ]�,x,v

v 
 [�x.� ]� � �x.� 
 v . � � � 
 �,x,v x,v v,v

w 
 [�x.� ]� � �x.� 
 w. � � � 
 � � w 
 �.x,v x,v w,v
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� � � �The de{nitions of � and � are circular.

We need to rely on a strati{ed construction of the two relations.

� � � � � � � �We then take � = � and " = " .i� �i i ��i ��
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Compatible equivalence

� � � �The relation " is |compatible} with � .

� � � �In particular we have " � � .


 
If for all � there is p such that t 
 � � p and u 
 � � p then t " u .
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i

�
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�
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Work in progress and future work

Implementation of the system (in progress).

Inductive and coinductive types (in progress).

Recursion, termination checking (in progress).

PhD thesis (coming soon).

Compile PML programs (future work).

Mixing terminating / non-terminating programs (future work).
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Fin.


