AN OVERVIEW OF THE PML, LANGUAGE

REALISABILITY, SUBTYPING AND CYCLIC PROOFS

lrezia (S\)

RODOLPHE LEPIGRE
JOURNEES INAUGURALES DU GT SCALP — 26/11/2018

SEMANTICS AND IMPLEMENTATION
OF AN EXTENSION OF ML FOR
PROVING PROGRAMS

&:' UNIVERSITE
SAVOIE
MONT BLANC

RODOLPHE LEPIGRE - 18/07/2017

SUPERVISED BY CHRISTOPHE RAFFALLI, PIERRE HYVERNAT (AND KARIM NOUR)

A PROGRAMMING LANGUAGE, WITH PROGRAM PROVING FEATURES

An ML-like programming language with:
- records, variants (constructors), inductive types,
- polymorphism, general recursion,
- a call-by-value evaluation strategy,
- effects (control operators),

- a light, Curry-style syntax and subtyping.

RODOLPHE LEPIGRE 1/ 40

A PROGRAMMING LANGUAGE, WITH PROGRAM PROVING FEATURES

An ML-like programming language with:
- records, variants (constructors), inductive types,
- polymorphism, general recursion,
- a call-by-value evaluation strategy,
- effects (control operators),

- a light, Curry-style syntax and subtyping.

For proving program, the type system is enriched with:

programs as individuals (higher-order layer),

an equality type t = u (observational equivalence),

a dependent function type (typed quantification).

Termination checking is required for proofs.

RODOLPHE LEPIGRE 1/ 40

EXAMPLE OF PROGRAM AND PROOF

type rec nat = [Zero ; S of nat]

val rec add : nat = nat = nat =
fun nm { case n { Zero — m | S[k] — S[add k m] } }

RODOLPHE LEPIGRE 2/ 40

EXAMPLE OF PROGRAM AND PROOF

type rec nat = [Zero ; S of nat]

val rec add : nat = nat = nat =
fun nm { case n { Zero — m | S[k] — S[add k m] } }

val add_Zero m : Vmenat, add Zerom = m =
fun m { {} }

RODOLPHE LEPIGRE 2./ 40

EXAMPLE OF PROGRAM AND PROOF

type rec nat = [Zero ; S of nat]

val rec add : nat = nat = nat =
fun nm { case n { Zero — m | S[k] — S[add k m] } }

val add_Zero m : Vmenat, add Zerom = m =
fun m { {} }

val rec add n Zero : Vvnenat, add n Zero = n =
fun n {
case n {
Zero — {}
S[p] — add _n Zero p
}

RODOLPHE LEPIGRE 2./ 40

PART I

PART II

PaArT III

PART IV

PART V

RODOLPHE LEPIGRE

SPECIFIC TYPE CONSTRUCTORS

FORMALISATION OF THE SYSTEM AND SEMANTICS

SEMANTICAL VALUE RESTRICTION

LocAL SUBTYPING AND CHOICE OPERATORS

CycLic PROOFS AND TERMINATION CHECKING

3/ 40

PART I

SPECIFIC TYPE CONSTRUCTORS

RODOLPHE LEPIGRE 4 | 40

PROPERTIES AS PROGRAM EQUIVALENCES

Examples of (equational) program properties:
add (add mn) k = add m (add n k)

rev(revl) =1

- mapg (map f1l) = map (funx {g (fx)}) 1

sort (sort 1) = sortl

RODOLPHE LEPIGRE

(associativity of add)
(rev is an involution)
(map and composition)

(sort is idempotent)

5/ 40

PROPERTIES AS PROGRAM EQUIVALENCES

Examples of (equational) program properties:
add (add mn) k = add m (add n k)

rev(revl) =1

- mapg (map f1l) = map (funx {g (fx)}) 1

sort (sort 1) = sortl

Specification of a sorting function using predicates:

- sorted (sort 1) = true

- permutation (sort 1) 1 = true

RODOLPHE LEPIGRE

(associativity of add)
(rev is an involution)
(map and composition)

(sort is idempotent)

(sort produces a sorted list)

(sort yields a permutation)

5/ 40

EQuALITY TYPES AND EQUIVALENCE

We consider the type former t = u (where t and u are arbitrary terms).

RODOLPHE LEPIGRE 6/ 40

EQuALITY TYPES AND EQUIVALENCE
We consider the type former t = u (where t and u are arbitrary terms).
It is interpreted as:

- the unit type T if t and u are “equivalent”,

- the empty type L otherwise.

RODOLPHE LEPIGRE 6 | 40

EQuALITY TYPES AND EQUIVALENCE
We consider the type former t = u (where t and u are arbitrary terms).
It is interpreted as:

- the unit type T if t and u are “equivalent”,

- the empty type L otherwise.

dec. proc. says “yes”
: T ZkFuw=u,

RODOLPHE LEPIGRE 6 | 40

EQuALITY TYPES AND EQUIVALENCE
We consider the type former t = u (where t and u are arbitrary terms).

It is interpreted as:
- the unit type T if t and u are “equivalent”,

- the empty type L otherwise.

dec. proc. says “yes”
: T ZThREuy =, LKx:T:yZ,uu=uw, Ht:C
SHEtiuy=w, x:wy=u; ZFHt:C

RODOLPHE LEPIGRE 6 | 40

EQuALITY TYPES AND EQUIVALENCE
We consider the type former t = u (where t and u are arbitrary terms).

It is interpreted as:
- the unit type T if t and u are “equivalent”,

- the empty type L otherwise.

dec. proc. says “yes”
: T ZThREuy =, LKx:T:yZ,uu=uw, Ht:C
SHEtiuy=w, x:wy=u; ZFHt:C

Remark: cannot be complete since equivalence is undecidable.

RODOLPHE LEPIGRE 6 | 40

FIRST-ORDER QUANTIFICATION IS NOT ENOUGH

val rec add : nat = nat = nat =
fun nm { case n { Zero —» m | S[k] — S[add k m] } }

RODOLPHE LEPIGRE 7 | 40

FIRST-ORDER QUANTIFICATION IS NOT ENOUGH

val rec add : nat = nat = nat =
fun nm { case n { Zero — m | S[kl] — S[add k m] } }

val add Zero m : vm, add Zerom = m = {- ??? -}

RODOLPHE LEPIGRE 7 | 40

FIRST-ORDER QUANTIFICATION IS NOT ENOUGH

val rec add : nat = nat = nat =
fun nm { case n { Zero —» m | S[k] — S[add k m] } }

val add Zero m : vm, add Zerom = m = {}
// Immediate by definition

RODOLPHE LEPIGRE 7 | 40

FIRST-ORDER QUANTIFICATION IS NOT ENOUGH

val rec add : nat = nat = nat =
fun nm { case n { Zero — m | S[kl] — S[add k m] } }

val add Zero m : vm, add Zerom = m = {}
// Immediate by definition
val add n Zero : vn, add n Zero = n = {- ??? -}

RODOLPHE LEPIGRE 7 | 40

FIRST-ORDER QUANTIFICATION IS NOT ENOUGH

val rec add : nat = nat = nat =
fun nm { case n { Zero —» m | S[k] — S[add k m] } }

val add Zero m : vm, add Zerom = m = {}
// Immediate by definition
val add n Zero : vn, add n Zero = n = {- ??? -}

// Nothing we can do

RODOLPHE LEPIGRE 7 | 40

FIRST-ORDER QUANTIFICATION IS NOT ENOUGH

val rec add : nat = nat = nat =
fun nm { case n { Zero —» m | S[k] — S[add k m] } }

val add Zero m : vm, add Zerom = m = {}
// Immediate by definition
val add n Zero : vn, add n Zero = n = {- ??? -}

// Nothing we can do

We need a form of typed quantification!

RODOLPHE LEPIGRE 7 | 40

DEPENDENT FUNCTIONS FOR TYPED QUANTIFICATION

val rec add n Zero : Vvnenat, add n Zero = n =
fun n {
case n {
Zero — {}
S[p] — add n Zero p
}
}

RODOLPHE LEPIGRE 8/ 40

DEPENDENT FUNCTIONS FOR TYPED QUANTIFICATION

val rec add n Zero : Vvnenat, add n Zero = n =
fun n {
case n {
Zero — {}
S[p] — add n Zero p
}

Remark: we may inspect the elements of the domain.

RODOLPHE LEPIGRE 8 / 40

DEPENDENT FUNCTIONS FOR TYPED QUANTIFICATION

val rec add n Zero : Vvnenat, add n Zero = n =
fun n {
case n {
Zero — {}
S[p] — add n Zero p
}
}

Remark: we may inspect the elements of the domain.

Nx:A;ZFt:B
' Z FAx.t: Vx€A.B

RODOLPHE LEPIGRE 8 / 40

DEPENDENT FUNCTIONS FOR TYPED QUANTIFICATION

val rec add n Zero : Vvnenat, add n Zero = n =
fun n {
case n {
Zero — {}
S[p] — add n Zero p
}
}

Remark: we may inspect the elements of the domain.

x:A;Z2FHt:B NZFt:¥xeAB T;Z2Fv:A
' Z FAx.t: Vx€A.B M=ZkFtv:Bx:=y]

RODOLPHE LEPIGRE 8 / 40

STRUCTURING PROOFS WITH DUMMY PROGRAMS

val rec add_n_Sm : Vn menat, add n S[m] = S[add n m] =
fun n m {
case n { Zero — {} | S[k] — add n Sm k m }
}
val rec add comm : Vn menat, add nm = add m n =
fun nm {
case n {

Zero — add _n_Zero m
S[k] — add n Sm m k; add comm k m

}

RODOLPHE LEPIGRE 9/ 40

PART II

FORMALISATION OF THE SYSTEM AND SEMANTICS

RODOLPHE LEPIGRE 10 / 40

REALIZABILITY MODEL

We build a model to prove that the language has the expected properties.

RODOLPHE LEPIGRE 11 / 40

REALIZABILITY MODEL

We build a model to prove that the language has the expected properties.

To construct the model, we need to:

1) give the syntax of programs and types,

2) define the interpretation of types as sets of terms (uses reduction),
3) define adequate typing rules,

4) deduce termination, type safety and consistency.

RODOLPHE LEPIGRE 11 / 40

REALIZABILITY MODEL

We build a model to prove that the language has the expected properties.

To construct the model, we need to:

1) give the syntax of programs and types,

2) define the interpretation of types as sets of terms (uses reduction),
3) define adequate typing rules,

4) deduce termination, type safety and consistency.

Advantage: it is a very flexible approach.

RODOLPHE LEPIGRE

11 / 40

CALL-BY-VALUE ABSTRACT MACHINE

Values (A,) Vv, w z= x| At [{(Li=vi), } | GV

Terms (A) tyuw z=vitu | vl [DHChi = t),] | pet | [t
Stacks (1) m, & = ole|v.m| [tln (evaluation context)
Processes Pyq = txm

RODOLPHE LEPIGRE 12 / 40

CALL-BY-VALUE REDUCTION RELATION

{(l’i:vi)iel}'lk* T > Vk* Tt (k € I)

I*7 > t[x=vi*m (kel)

=)
o
*
ipal
Y
-
*
A

RODOLPHE LEPIGRE 13 / 40

SUCCESSFUL COMPUTATION AND OBSERVATIONAL EQUIVALENCE

The abstract machine may either:
- successfully compute a result (it converges),

- fail with a runtime error or never terminate (it diverges).

RODOLPHE LEPIGRE 14 | 40

SUCCESSFUL COMPUTATION AND OBSERVATIONAL EQUIVALENCE

The abstract machine may either:
- successfully compute a result (it converges),

- fail with a runtime error or never terminate (it diverges).

Definition: we write t x 7t |} iff t % 7t >* v x ¢ for some value v (t * 7t | otherwise).

RODOLPHE LEPIGRE 14 / 40

SUCCESSFUL COMPUTATION AND OBSERVATIONAL EQUIVALENCE

The abstract machine may either:
- successfully compute a result (it converges),

- fail with a runtime error or never terminate (it diverges).

Definition: we write t x 7t |} iff t % 7t >* v x ¢ for some value v (t * 7t | otherwise).

(Ax.x) {}x¢el (Ax.x x) (Axx x)*xef (Ax.t).lyxe

RODOLPHE LEPIGRE

14 / 40

SUCCESSFUL COMPUTATION AND OBSERVATIONAL EQUIVALENCE

The abstract machine may either:
- successfully compute a result (it converges),

- fail with a runtime error or never terminate (it diverges).

Definition: we write t x 7t |} iff t % 7t >* v x ¢ for some value v (t * 7t | otherwise).

(Ax.x) {}x¢el (Ax.x x) (Axx x)*xef (Ax.t).lyxe

Definition: two terms are equivalent if they converge in the same contexts.

RODOLPHE LEPIGRE 14 / 40

SUCCESSFUL COMPUTATION AND OBSERVATIONAL EQUIVALENCE

The abstract machine may either:
- successfully compute a result (it converges),

- fail with a runtime error or never terminate (it diverges).

Definition: we write t x 7t |} iff t % 7t >* v x ¢ for some value v (t * 7t | otherwise).

(Ax.x) {}x¢el (Ax.x x) (Axx x)*xef (Ax.t).lyxe

Definition: two terms are equivalent if they converge in the same contexts.

(=) = {(t,u) [V, txnt & ux ﬂll}

RODOLPHE LEPIGRE 14 / 40

SUCCESSFUL COMPUTATION AND OBSERVATIONAL EQUIVALENCE

The abstract machine may either:
- successfully compute a result (it converges),

- fail with a runtime error or never terminate (it diverges).

Definition: we write t x 7t |} iff t % 7t >* v x ¢ for some value v (t * 7t | otherwise).

(Ax.x) {}x¢el (Ax.x x) (Axx x)*xef (Ax.t).lyxe

Definition: two terms are equivalent if they converge in the same contexts.

(=) = {6, wIvn Ve, tpxnll & upxmlf

RODOLPHE LEPIGRE 14 / 40

TyYPES AS SETS OF CANONICAL VALUES

Definition: a type A is interpreted as a set of values [A] closed under (=).

RODOLPHE LEPIGRE 15 / 40

TyYPES AS SETS OF CANONICAL VALUES

Definition: a type A is interpreted as a set of values [A] closed under (=).

[{L: A LAR = {{112\)1;12:\12} |vie[Al A v, € [[Az]]}
[IC:A G A =[G [iell, 2} A velAd]
[vx.A] = N [AX:=0]]

® type

[3X.A] = q)Ltgpe[[/\[x = O]

[vx.A] = () [Ala=t]]

v value

[3x.A] = U [Ala:=t]]

v value

RODOLPHE LEPIGRE 15 / 40

MEMBERSHIP TYPES AND DEPENDENCY

We consider a new membership type t€A (with t a term, A a type).
- It is interpreted as [teA] = {v € [A] | t = v},

- and allows the introduction of dependency.

RODOLPHE LEPIGRE 16 / 40

MEMBERSHIP TYPES AND DEPENDENCY

We consider a new membership type t€A (with t a term, A a type).
- It is interpreted as [teA] = {v € [A] | t = v},

- and allows the introduction of dependency.

The dependent function type Vx€A.B
- is defined as Vx.(x€A = B),

- this is a form of relativised quantification scheme.

RODOLPHE LEPIGRE 16 / 40

SEMANTIC RESTRICTION TYPE AND EQUALITIES

We also consider a new restriction type A [P:
- it is build using a type A and a “semantic predicate” P,
- [ATP] is equal to [A] if P is satisfied and to [L] otherwise.

- We can use predicates like t = u, =P or P A Q.

RODOLPHE LEPIGRE 17 / 40

SEMANTIC RESTRICTION TYPE AND EQUALITIES

We also consider a new restriction type A [P:
- it is build using a type A and a “semantic predicate” P,
- [ATP] is equal to [A] if P is satisfied and to [L] otherwise.

- We can use predicates like t = u, =P or P A Q.

Remark: equality types t = u are encoded as T [t=u.

RODOLPHE LEPIGRE 17 / 40

SEMANTIC RESTRICTION TYPE AND EQUALITIES

We also consider a new restriction type A [P:
- it is build using a type A and a “semantic predicate” P,
- [ATP] is equal to [A] if P is satisfied and to [L] otherwise.

- We can use predicates like t = u, =P or P A Q.

Remark: equality types t = u are encoded as T [t=u.

Remark: refinement types {x € A | P} are encoded as Ix.(x €A [P).

RODOLPHE LEPIGRE 17 / 40

INTERPRETATION OF THE FUNCTION TYPE

[A = B] = {Axw | Vve[A],wx:=v] € [B]}

RODOLPHE LEPIGRE 18 / 40

INTERPRETATION OF THE FUNCTION TYPE

[A = B] = {Ax.w | Vve[Al,wlx:=v] € [B]}

What about A-abstractions which bodies are terms?

RODOLPHE LEPIGRE 18 / 40

INTERPRETATION OF THE FUNCTION TYPE

[A = B] = {Ax.w | Vve[Al,wlx:=v] € [B]}

What about A-abstractions which bodies are terms?

We define a completion operation [A] +— AT

RODOLPHE LEPIGRE 18 / 40

INTERPRETATION OF THE FUNCTION TYPE

[A = B] = {Ax.w | Vve[Al,wlx:=v] € [B]}

What about A-abstractions which bodies are terms?

We define a completion operation [A] +— AT

The set [A]"" contains terms “behaving” as values of [A].

RODOLPHE LEPIGRE 18 / 40

INTERPRETATION OF THE FUNCTION TYPE

[A = B] = {Ax.w | Vve[Al,wlx:=v] € [B]}

What about A-abstractions which bodies are terms?

We define a completion operation [A] +— AT

The set [A]"" contains terms “behaving” as values of [A].

Definition: we take [A = B] = {Ax.t | Vv e [A], tlx:=v] € [B]""}.

RODOLPHE LEPIGRE 18 / 40

POLE AND ORTHOGONALITY

The definition of [A]"" is parametrised by a set of processes 1L C AxIT.

RODOLPHE LEPIGRE 19 / 40

POLE AND ORTHOGONALITY

The definition of [A]"" is parametrised by a set of processes 1L C AxIT.

We require that p € I and q > p implies q € L.

RODOLPHE LEPIGRE 19 / 40

POLE AND ORTHOGONALITY

The definition of [A]"" is parametrised by a set of processes 1L C AxIT.
We require that p € I and q > p implies q € L.

Intuitively, 1 is a set of processes that “behave well”.

RODOLPHE LEPIGRE 19 / 40

POLE AND ORTHOGONALITY

The definition of [A]"" is parametrised by a set of processes 1L C AxIT.
We require that p € I and q > p implies q € L.
Intuitively, 1 is a set of processes that “behave well”.

The set 1L = {p | pl} is a good choice.

RODOLPHE LEPIGRE 19 / 40

POLE AND ORTHOGONALITY

The definition of [A]"" is parametrised by a set of processes 1L C AxIT.
We require that p € I and q > p implies q € L.
Intuitively, 1 is a set of processes that “behave well”.
The set 1L = {p | pl} is a good choice.
[A] € {dPCA |vedDAVv=w = we D)

[A]Y = {meTl|VvelAl,vxmn e 1}

[AT™ = {te A|Vre[A]lY tsxme 1}

RODOLPHE LEPIGRE 19 / 40

VALUE RESTRICTION AND TYPING JUDGMENTS

Combining call-by-value and effects leads to soundness issues (well-known).

RODOLPHE LEPIGRE 20 | 40

VALUE RESTRICTION AND TYPING JUDGMENTS

Combining call-by-value and effects leads to soundness issues (well-known).

Usual solution: “value restriction” on some typing rules.

RODOLPHE LEPIGRE 20 | 40

VALUE RESTRICTION AND TYPING JUDGMENTS

Combining call-by-value and effects leads to soundness issues (well-known).
Usual solution: “value restriction” on some typing rules.
This is encoded with two forms judgments:

- I'; = Ky v A for values only,
-T;

Z F t: A for terms (including values).

RODOLPHE LEPIGRE 20 | 40

VALUE RESTRICTION AND TYPING JUDGMENTS

Combining call-by-value and effects leads to soundness issues (well-known)
Usual solution: “value restriction” on some typing rules.

This is encoded with two forms judgments:
- I'; = Ky v A for values only,
- T'; Z Ft: A for terms (including values).

[

'Valv:A
Fv:A

=
[;] [

20 | 40

RODOLPHE LEPIGRE

VALUE RESTRICTION AND TYPING JUDGMENTS

Combining call-by-value and effects leads to soundness issues (well-known).

Usual solution: “value restriction” on some typing rules

This is encoded with two forms judgments:
- =

K. v : A for values only,

- T'; Z Ft: A for terms (including values).
M ZRyv:A NzFt:A=B TI;ZFu:A
NZkFv:A NZkFtu:B
Nx:A;ZFHt:B
Tx:A; 2 hkygx: A N ZkyiAxt:A=B
RODOLPHE LEPIGRE

20 | 40

ADEQUATE TYPING RULE

Theorem (adequacy lemma):
- if Ft:A is derivable then t € [A]",
- if k,; v : A is derivable then v € [A].

RODOLPHE LEPIGRE 21/ 40

ADEQUATE TYPING RULE

Theorem (adequacy lemma):
- if Ft:A is derivable then t € [A]",
- if k,; v : A is derivable then v € [A].

Proof by induction on the typing derivation.

RODOLPHE LEPIGRE 21/ 40

ADEQUATE TYPING RULE

Theorem (adequacy lemma):
- if Ft:A is derivable then t € [A]",
- if k,; v : A is derivable then v € [A].

Proof by induction on the typing derivation.

We only need to check that our typing rules are “correct”.

RODOLPHE LEPIGRE 21/ 40

ADEQUATE TYPING RULE

Theorem (adequacy lemma):
- if Ft:A is derivable then t € [A]",
- if k,; v : A is derivable then v € [A].

Proof by induction on the typing derivation.

We only need to check that our typing rules are “correct”.

KaVv:A

- is correct since [A] C [A]"™"
v

For example

RODOLPHE LEPIGRE 21/ 40

ADEQUACY OF FOR ALL INTRODUCTION

M Z2hkav:A Xer
I Zhkgv: VXA

22 [40

RODOLPHE LEPIGRE

ADEQUACY OF FOR ALL INTRODUCTION

Xhyv:iA
g V1 VXA

RODOLPHE LEPIGRE 22 [40

ADEQUACY OF FOR ALL INTRODUCTION

Xhyv:iA
g V1 VXA

We suppose v € [A[X = ®]] for all d, and show v € [VX.A].

RODOLPHE LEPIGRE 22 [40

ADEQUACY OF FOR ALL INTRODUCTION

X '7;11 v:iA
v VXA

We suppose v € [A[X = ®]] for all d, and show v € [VX.A].

This is immediate since [VX.A] = N, [AX:= ®]].

RODOLPHE LEPIGRE 22/ 40

ADEQUACY OF FOR ALL INTRODUCTION

X '7;11 v:iA
v VXA

We suppose v € [A[X = ®]] for all d, and show v € [VX.A].

This is immediate since [VX.A] = N, [AX:= ®]].

XkEt: A
Ft: VXA

RODOLPHE LEPIGRE 22/ 40

ADEQUACY OF FOR ALL INTRODUCTION

XEgVv:A
EaVv:VX.A

We suppose v € [A[X = ®]] for all d, and show v € [VX.A].

This is immediate since [VX.A] = N, [AX:= ®]].

XkEt: A
Ft: VXA

We suppose t € [A[X:= ®]]* for all &, and show t € [VX.AJ™

RODOLPHE LEPIGRE 22/ 40

ADEQUACY OF FOR ALL INTRODUCTION

XEgVv:A
EaVv:VX.A

We suppose v € [A[X = ®]] for all d, and show v € [VX.A].

This is immediate since [VX.A] = N, [AX:= ®]].

XkEt: A
Ft: VXA

We suppose t € [A[X:= ®]]* for all &, and show t € [VX.AJ™

However we have M, [AX = O]]** € [¥X.AT™ = (ng [AX:= ®]]) .

RODOLPHE LEPIGRE 22/ 40

PROPERTIES OF THE SYSTEM

Theorem (normalisation):

t: A implies t * ¢ > v x ¢ for some value v.

RODOLPHE LEPIGRE 23 | 40

PROPERTIES OF THE SYSTEM

Theorem (normalisation):

t: A implies t * ¢ > v x ¢ for some value v.

Theorem (safety for simple datatypes):

t: A implies t * ¢ > v x ¢ for some value v : A.

RODOLPHE LEPIGRE

23 | 40

PROPERTIES OF THE SYSTEM

Theorem (normalisation):

t: A implies t * ¢ > v x ¢ for some value v.

Theorem (safety for simple datatypes):

t: A implies t * ¢ > v x ¢ for some value v : A.

Theorem (consistency):

there is no closed term t: L.

RODOLPHE LEPIGRE

23 | 40

PART III

SEMANTICAL VALUE RESTRICTION

RODOLPHE LEPIGRE 24 | 40

DERIVED RULES FOR DEPENDENT FUNCTIONS

x:AFt:Bla:=x] Ft:VaeAB kKyv:A
Ka Ax.t : Vac€A.B Ftv:Bla:=v]

RODOLPHE LEPIGRE 25 | 40

DERIVED RULES FOR DEPENDENT FUNCTIONS

x:AFt:Bla:=x] Ft:VaeAB kKyv:A
Ka Ax.t : Vac€A.B Ftv:Bla:=v]

Ft:VacA.B Def FaVv:A .
Ft:Va.(aeA = B) “ g V:iveA
Ft:veA = Bla=v] I—v:ve/\é

Ftv:Bla=v] ‘

RODOLPHE LEPIGRE 25 / 40

DERIVED RULES FOR DEPENDENT FUNCTIONS

x:AFt:Bla:=x] Ft:VaeAB kKyv:A
Ka Ax.t : Vac€A.B Ftv:Bla:=v]

Ft:VacA.B Def BaVv:A .
Ft:Va.(aeA = B) “ g V:iveA
Ft:veA = Bla=v] I—v:ve/\é

Ftv:Bla=v] ‘

Value restriction breaks the compositionality of dependent functions.

// add n Zero : Vnenat, add n Zero = n

add _n_Zero (add Zero S[Zero]) : add (add Zero S[Zero]) Zero = add Zero S[Zero]

RODOLPHE LEPIGRE 25 / 40

SEMANTICAL VALUE RESTRICTION

Ft:VaeAB K ;v:A by Ft:VaeAB Fu:A Fu=wv

We replace
Ftv:Bla:=v] Ftu:Bla:=1u]

RODOLPHE LEPIGRE 26 | 40

SEMANTICAL VALUE RESTRICTION

Ft:VaeAB K ;v:A Ft:VaeAB Fu:A Fu=wv

We replace by
Ftv:Bla:=v] Ftu:Bla:=1u]
This requires changing —@ YA o FtiA Ft=v
RaVv:veEA Ft:teA

RODOLPHE LEPIGRE 26 | 40

SEMANTICAL VALUE RESTRICTION

Ft:VaeAB K ;v:A Ft:VaeAB Fu:A Fu=wv

We replace by
Ftv:Bla:=v] Ftu:Bla:=1u]
This requires changing —@ YA o FtiA Ft=v
RaVv:veEA Ft:teA

Can this rule be derived in the system?

RODOLPHE LEPIGRE 26 | 40

SEMANTICAL VALUE RESTRICTION

Ft:VaeAB K ;v:A Ft:VaeAB Fu:A Fu=wv

We replace by
Ftv:Bla:=v] Ftu:Bla:=1u]
This requires changing —@ YA o FtiA Ft=v
RaVv:veEA Ft:teA

Can this rule be derived in the system?

Ft:A Ft=v_

Fv:A
RaVv:A c.
I;alv:veAT'
Fv:veA Ft=v_
Ft:tcA -

RODOLPHE LEPIGRE 26 | 40

BIORTHOGONAL COMPLETION CLOSED FOR VALUES

Everything goes down to having a rule H—A
RaVv:A

RODOLPHE LEPIGRE 27 | 40

BIORTHOGONAL COMPLETION CLOSED FOR VALUES

Everything goes down to having a rule H—A
bal V:iA
It should not be confused with W—A
Fv:A

RODOLPHE LEPIGRE 27 | 40

BIORTHOGONAL COMPLETION CLOSED FOR VALUES

Everything goes down to having a rule H—A
RaVv:A
|7a1 v:iA

It should not be confused with .
Fv:A

Semantically, this requires that v € [AT" implies v € [A].

RODOLPHE LEPIGRE 27 | 40

BIORTHOGONAL COMPLETION CLOSED FOR VALUES

Everything goes down to having a rule H—A
RaVv:A
|7a1 v:A

It should not be confused with .
Fv:A

Semantically, this requires that v € [AT" implies v € [A].

The biorthogonal completion should not introduce new values.

RODOLPHE LEPIGRE 27 | 40

BIORTHOGONAL COMPLETION CLOSED FOR VALUES

Fv:A
I;alv:A'
balv:A
Fv:A~

Everything goes down to having a rule

It should not be confused with

Semantically, this requires that v € [AT" implies v € [A].

The biorthogonal completion should not introduce new values.

The rule seems reasonable, but it is hard to justify semantically.

RODOLPHE LEPIGRE 27 | 40

THE NEW INSTRUCTION TRICK

We do not have v € [A]"" implies v € [A] in every realizability model.

RODOLPHE LEPIGRE 28 | 40

THE NEW INSTRUCTION TRICK

We do not have v ¢ [A] implies v ¢ [AT" in every realizability model.

RODOLPHE LEPIGRE 28 | 40

THE NEW INSTRUCTION TRICK

We do not have v ¢ [A] implies v ¢ [AT" in every realizability model.

We extend the system with a new term constructor 9,,, such that

dywxm>vxm iff v FEw.

RODOLPHE LEPIGRE 28 | 40

THE NEW INSTRUCTION TRICK

We do not have v ¢ [A] implies v ¢ [AT" in every realizability model.

We extend the system with a new term constructor 9,,, such that

dywxm>vxm iff v FEw.

Idea of the proof with L = {p | p{}:

RODOLPHE LEPIGRE 28 | 40

THE NEW INSTRUCTION TRICK

We do not have v ¢ [A] implies v ¢ [AT" in every realizability model.

We extend the system with a new term constructor 9,,, such that

dywxm>vxm iff v FEw.

Idea of the proof with L = {p | p{}:
- We assume v ¢ [A] and show v ¢ [A]""

RODOLPHE LEPIGRE 28 | 40

THE NEW INSTRUCTION TRICK

We do not have v ¢ [A] implies v ¢ [AT" in every realizability model.

We extend the system with a new term constructor 9,,, such that

dywxm>vxm iff v FEw.
Idea of the proof with L = {p | p{}:

- We assume v ¢ [A] and show v ¢ [A]""
- We need to find 7 € [A]" such that v * 7t 1.

RODOLPHE LEPIGRE 28 | 40

THE NEW INSTRUCTION TRICK

We do not have v ¢ [A] implies v ¢ [AT" in every realizability model.

We extend the system with a new term constructor 9,,, such that

dywxm>vxm iff v FEw.

Idea of the proof with L = {p | p{}:
- We assume v ¢ [A] and show v ¢ [A]""
- We need to find 7 € [A]" such that v * 7t 1.
- We need to find 7t such that vt and Vw e [A]l,wxn|.

RODOLPHE LEPIGRE 28 | 40

THE NEW INSTRUCTION TRICK

We do not have v ¢ [A] implies v ¢ [AT" in every realizability model.

We extend the system with a new term constructor 9,,, such that

dywxm>vxm iff v FEw.

Idea of the proof with L = {p | p{}:
- We assume v ¢ [A] and show v ¢ [A]""
- We need to find 7 € [A]" such that v * 7t 1.
- We need to find 7t such that vt and Vw e [A]l,wxn|.

- We can take 71 = [Ax.0,]e.

RODOLPHE LEPIGRE 28 | 40

THE NEW INSTRUCTION TRICK

We do not have v ¢ [A] implies v ¢ [AT" in every realizability model.

We extend the system with a new term constructor 9,,, such that

dywxm>vxm iff v FEw.

Idea of the proof with L = {p | p{}:
- We assume v ¢ [A] and show v ¢ [A]""
- We need to find 7 € [A]" such that v * 7t 1.
We need to find 7t such that vt and Vw e [A], wxm|.

We can take 1 = [Ax.0, €.

vk [Ax.Oy e > A0,k v.e >0, ke

RODOLPHE LEPIGRE 28 | 40

THE NEW INSTRUCTION TRICK

We do not have v ¢ [A] implies v ¢ [AT" in every realizability model.

We extend the system with a new term constructor 9,,, such that

dywxm>vxm iff v FEw.

Idea of the proof with L = {p | p{}:
- We assume v ¢ [A] and show v ¢ [A]""
- We need to find 7 € [A]" such that v * 7t 1.
We need to find 7t such that vt and Vw e [A], wxm|.

We can take 1 = [Ax.0, €.

vk [Ax.Oy e > A0,k v.e >0, ke

Wk A0, Je > Ax.d ¥ w.e >0, ke >wxel if we [A]

RODOLPHE LEPIGRE 28 | 40

WELL-DEFINED CONSTRUCTION OF EQUIVALENCE AND REDUCTION

Problem: the definitions of (>) and (=) are circular.

RODOLPHE LEPIGRE 29 / 40

WELL-DEFINED CONSTRUCTION OF EQUIVALENCE AND REDUCTION

Problem: the definitions of (>) and (=) are circular.
We need to rely on a stratified construction of the two relations.
(=) = (MU {(évyw*ﬂ,v*ﬂ) | 3j<i,v §éj w}
(=) = {(t, u) | Vj<i,vn,Vo, tc*nllj & uc*nﬂj}

We then take
=) = U and = = NE).

ieN ieN

RODOLPHE LEPIGRE 29 / 40

PART IV

LOCAL SUBTYPING AND CHOICE OPERATORS

RODOLPHE LEPIGRE 30 / 40

A SYNTAX-DIRECTED PRESENTATION
PML, is hard to implement for several reasons:

- it is a Curry-style language (quantifiers are not reflected in terms),

- many of its type constructors don't have “algorithmic contents”.

RODOLPHE LEPIGRE 31/ 40

A SYNTAX-DIRECTED PRESENTATION

PML, is hard to implement for several reasons:
- it is a Curry-style language (quantifiers are not reflected in terms),

- many of its type constructors don't have “algorithmic contents”.

MNzZFt:A ad¢FfV(;Z) ZkHt=v M ZkFt:VaA
I Zkt:VaA NZrkt:Ala=ul

RODOLPHE LEPIGRE 31/ 40

A SYNTAX-DIRECTED PRESENTATION

PML, is hard to implement for several reasons:
- it is a Curry-style language (quantifiers are not reflected in terms),

- many of its type constructors don't have “algorithmic contents”.

MNzZFt:A ad¢FfV(;Z) ZkHt=v M ZkFt:VaA
I Zkt:VaA NZrkt:Ala=ul

Solution: handle these connectives using local subtyping.

RODOLPHE LEPIGRE 31/ 40

A SYNTAX-DIRECTED PRESENTATION

PML, is hard to implement for several reasons:
- it is a Curry-style language (quantifiers are not reflected in terms),

- many of its type constructors don't have “algorithmic contents”.

MNzZFt:A ad¢FfV(;Z) ZkHt=v M ZkFt:VaA
I Zkt:VaA NZrkt:Ala=ul

Solution: handle these connectives using local subtyping.

We then obtain a type system with:
- one typing for each term (or value) constructor,

- one typing rule for each pair of type constructors (up to commutation).

RODOLPHE LEPIGRE 31/ 40

CHOICE OPERATORS AND LOCAL SUBTYPING

We replace free variables with “choice operators”:
- &, .4t ¢ B) denotes some v € [A] such that [t[x := a]] ¢ [B]*" ,
- and similar things are defined for types and other syntactic elements.

- Choice operators are interpreted using elements of the semantic domain.

RODOLPHE LEPIGRE 32/ 40

CHOICE OPERATORS AND LOCAL SUBTYPING

We replace free variables with “choice operators”:
- &, .4t ¢ B) denotes some v € [A] such that [t[x := a]] ¢ [B]*" ,
- and similar things are defined for types and other syntactic elements.

- Choice operators are interpreted using elements of the semantic domain.

We modify the system by:
- eliminating typing contexts (in favor of choice operators),
- introducing local subtyping judgments of the form = +t: A C B.
- They are interpreted as: “if =+t : A holds, then = F t : B also holds.”

RODOLPHE LEPIGRE 32/ 40

CHOICE OPERATORS AND LOCAL SUBTYPING

We replace free variables with “choice operators”:
- &, .4t ¢ B) denotes some v € [A] such that [t[x := a]] ¢ [B]*" ,
- and similar things are defined for types and other syntactic elements.

- Choice operators are interpreted using elements of the semantic domain.
We modify the system by:

- eliminating typing contexts (in favor of choice operators),

- introducing local subtyping judgments of the form = +t: A C B.

- They are interpreted as: “if = Ft: A holds, then = -t : B also holds.”

Remark: choice operators may not be necessary, but they makes the semantics simpler.

RODOLPHE LEPIGRE 32/ 40

CHOICE OPERATORS AND LOCAL SUBTYPING

We replace free variables with “choice operators”:
- &, .4t ¢ B) denotes some v € [A] such that [t[x := a]] ¢ [B]*" ,
- and similar things are defined for types and other syntactic elements.

- Choice operators are interpreted using elements of the semantic domain.

We modify the system by:
- eliminating typing contexts (in favor of choice operators),
- introducing local subtyping judgments of the form = +t: A C B.
- They are interpreted as: “if =+t : A holds, then = F t : B also holds.”

Remark: choice operators may not be necessary, but they makes the semantics simpler.

Remark: = - A C B can be encoded as = ¢, . A(x ¢ B) : A C B.

RODOLPHE LEPIGRE 32/ 40

EXAMPLES OF SYNTAX-DIRECTED TYPING RULES

STEMMEt:A=BCC Ze Alt¢B)#£0 I—t[x:zexeA(tﬁB)]:Bé
=FMt:C

i

RODOLPHE LEPIGRE 33 / 40

EXAMPLES OF SYNTAX-DIRECTED TYPING RULES

St B) £ ok txi=ecaltgB)]: B;$
ZFAt:C

i

ZkHEMXt:A=BCC

Sk ealtgB):ACC

RODOLPHE LEPIGRE 33 / 40

EXAMPLES OF SYNTAX-DIRECTED TYPING RULES

SHFM&Xt:A=BCC =

—

Ftix:=ecalt€B)]: B;\
ZkFAMt:C

ZheenltégB):ACC .
ZhecaltéB): C

ZHFt:A=B I—u:Aﬁ
ZFHtu:B ‘

[

RODOLPHE LEPIGRE

33 / 40

EXAMPLES OF SYNTAX-DIRECTED TYPING RULES

ZTHEMXtEt:A=BCC = I—t[x:zexeA(th)]:Bé
ZkFAMt:C

Sk ealtgB):ACC

Ax
ZhecaltéB): C
ZHFt:A=1B El—u:/\ﬁ
ZFtu:B ’
Zkv:iA EI—Ck[v]:[Ck:A]gB+v E}—v:{lk:/\;---}X
=+ CM:B i SVl A

RODOLPHE LEPIGRE 33 / 40

EXAMPLES OF SYNTAX-DIRECTED (LOCAL) SUBTYPING RULES

ZHt:AX=CCB, ZHt:ACBX:=ex(t¢B)] Zhv=t
ZFt:YXACB ZFt:ACVXB '

RODOLPHE LEPIGRE 34 | 40

EXAMPLES OF SYNTAX-DIRECTED (LOCAL) SUBTYPING RULES

EI—t:A[X::C]gBV ZHt:ACBX:=¢g(t€B)] ;I—v—tV
ZFt:YXACB =Ft:ACVXB '
S, uu=u, Ft:ACB Ekvztr ZHFt:ACB ZhFu =u,

SHt:Aluy=u,CB ' SHt:ACBlwy=u,

RODOLPHE LEPIGRE 34 | 40

EXAMPLES OF SYNTAX-DIRECTED (LOCAL) SUBTYPING RULES

[
T
<

|
-+
<

ZHt:AX=CICB, T ht:ACBX:=¢ex(t¢B)
' Zt:ACVYXB

ZHFt:VXACB

S, uy=u,Ft:ACB Ekvztr ZHFt:ACB ZhFu =u,
SHt:Alu=u,CB ' SHt:ACBlu= v
S, t=ubt:ACB Zkt=v ZHt:ACB Zht=u EZbt=v
‘ ZHt:ACueB '

ZFt:ueACB

34 | 40

RODOLPHE LEPIGRE

EXAMPLES OF SYNTAX-DIRECTED (LOCAL) SUBTYPING RULES

EI—t:A[X::C]QBV ZHt:ACBX:=¢g(t€B)] ;}—v—tV
ZFt:YXACB Zt:ACVYXB '
S, uu=u, Ft:ACB Ekvzt(ZHFt:ACB ZhFu =u,

SHt:Aluy=u,CB ' SHt:ACBlu= v

Z,t=ukFt:ACB El—tzvE
Zht:ucACB ' ZhFt:ACucB '
= }_W:Ang] = l_tW:B]ng El_tEV:>

El—t:A]:>B]§A2:>BZ

RODOLPHE LEPIGRE 34 | 40

PART V

CycLIC PROOFS AND TERMINATION CHECKING

RODOLPHE LEPIGRE 35 / 40

GENERAL RECURSION AND FIXPOINT UNFOLDING

Recursive programs rely on a term @a.v (binding a term in a value).

= Fvla:=ean] :A(p

avim - v[a:=pav]xm
® ? ZkF@av:A

RODOLPHE LEPIGRE 36 |/ 40

GENERAL RECURSION AND FIXPOINT UNFOLDING

Recursive programs rely on a term @a.v (binding a term in a value).

= Fvla:=ean] :A(p

avim - v[a:=pav]xm
® ? ZkF@av:A

Problem: we need to work with infinite proofs.

RODOLPHE LEPIGRE 36 | 40

GENERAL RECURSION AND FIXPOINT UNFOLDING

Recursive programs rely on a term @a.v (binding a term in a value).

= Fvla:=ean] :A(p
ZkF@av:A

eavxm —» v[a:=e@av]xm

Problem: we need to work with infinite proofs.

We introduce a cyclic structure in our proofs. [V (Z Ft: Al

Va (ZFt:A) =+ t CA) o =g (t ¢ A)]mdm

Gen

(EFt:A)x =«] Va (ZHt:A)

RODOLPHE LEPIGRE 36 | 40

ORDINALS AND INDUCTIVE TYPES

= Ft:ACBX:=p X.B]
SFt:ACp X.B

K 00

RODOLPHE LEPIGRE 37 | 40

ORDINALS AND INDUCTIVE TYPES

ZEt:A CB[X:=pX.B]
ZHt:ACuXB

K 00

ZHFt:ACBX=p XB] Ztkvuv<rt
ZFt:ACuXB '

RODOLPHE LEPIGRE 37 | 40

ORDINALS AND INDUCTIVE TYPES

ZFt:ACB[X:=pX.B]
ZHt:ACuXB

K 00

1

Ft:ACBX=puXB] Ztvuv<rt
Z=Ft:ACuX.B

r

;1> 0t AX = peax=pxaApXAICB ZEv=t
v;ZFt:uX.ACB

H

RODOLPHE LEPIGRE 37 | 40

ExAMPLE OF CyCLIC PROOF

Let us consider the “map” function: @m.AfAL[L|[]—=[][x::l—=fx::mfl].

It can be given either of the types:
- WX.Y(X = Y) = List(X) = List(X),
- Va.¥X.Y(X = Y) = List(x, X) = List(X),
- Va.VX.Y(X =Y) = List(«, X) = List(x, X).

RODOLPHE LEPIGRE 38 / 40

CONCLUSION

RODOLPHE LEPIGRE 39 / 40

FUTURE WORK

1) Practical issues (work in progress):
- Composing programs that are proved terminating.

- Extensible records and variant types (inference).

2) Toward a practical language:

- Compiler using type information for optimisations.

- Built-in types (int64, float) with their formal specification.

3) Theoretical questions:
- Can we handle more side-effects? (mutable cells, arrays)
- What can we realise with (variations of) 8,,,?
- Can we extend the system with quotient types?

- Can we formalise mathematics in the system?

RODOLPHE LEPIGRE

40 [40

RODOLPHE LEPIGRE

Practical Subtyping for Curry-Style Languages
https://lepigre.fr/files/publications/LepRaf2018a.pdf

PML,: Integrated Program Verification in ML
https://lepigre.fr/files/publications/Lepigre2018.pdf

Semantics and Implementation of an Extension of ML for Proving Programs

https://lepigre.fr/files/publications/Lepigre2017PhD.pdf

A Classical Realizability Model for a Semantical Value Restriction
https://lepigre.fr/files/publications/Lepigre2016.pdf

Thanks!

RODOLPHE LEPIGRE

