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A PROGRAMMING LANGUAGE, WITH PROGRAM PROVING FEATURES

An ML-like programming language with:
- records, variants (constructors), inductive types,
- polymorphism, general recursion,
- a call-by-value evaluation strategy,
- effects (control operators),

- a light, Curry-style syntax and subtyping.
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A PROGRAMMING LANGUAGE, WITH PROGRAM PROVING FEATURES

An ML-like programming language with:
- records, variants (constructors), inductive types,
- polymorphism, general recursion,
- a call-by-value evaluation strategy,
- effects (control operators),

- a light, Curry-style syntax and subtyping.

For proving program, the type system is enriched with:

programs as individuals (higher-order layer),

an equality type t = u (observational equivalence),

a dependent function type (typed quantification).

Termination checking is required for proofs.
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EXAMPLE OF PROGRAM AND PROOF

type rec nat = [Zero ; S of nat]

val rec add : nat = nat = nat =
fun nm { case n { Zero — m | S[k] — S[add k m] } }
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EXAMPLE OF PROGRAM AND PROOF

type rec nat = [Zero ; S of nat]

val rec add : nat = nat = nat =
fun nm { case n { Zero — m | S[k] — S[add k m] } }

val add_Zero m : Vmenat, add Zerom = m =
fun m { {} }

val rec add n Zero : Vvnenat, add n Zero = n =
fun n {
case n {
Zero — {}
S[p] — add _n Zero p
}
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PART I

SPECIFIC TYPE CONSTRUCTORS
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PROPERTIES AS PROGRAM EQUIVALENCES

Examples of (equational) program properties:
add (add mn) k = add m (add n k)

rev(revl) =1

- mapg (map f1l) = map (funx {g (fx)}) 1

sort (sort 1) = sortl

RODOLPHE LEPIGRE

(associativity of add)
(rev is an involution)
(map and composition)

(sort is idempotent)
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PROPERTIES AS PROGRAM EQUIVALENCES

Examples of (equational) program properties:
add (add mn) k = add m (add n k)

rev(revl) =1

- mapg (map f1l) = map (funx {g (fx)}) 1

sort (sort 1) = sortl

Specification of a sorting function using predicates:

- sorted (sort 1) = true

- permutation (sort 1) 1 = true

RODOLPHE LEPIGRE

(associativity of add)
(rev is an involution)
(map and composition)

(sort is idempotent)

(sort produces a sorted list)

(sort yields a permutation)

5/ 40



EQuALITY TYPES AND EQUIVALENCE

We consider the type former t = u (where t and u are arbitrary terms).
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It is interpreted as:

- the unit type T if t and u are “equivalent”,

- the empty type L otherwise.
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We consider the type former t = u (where t and u are arbitrary terms).

It is interpreted as:
- the unit type T if t and u are “equivalent”,

- the empty type L otherwise.

dec. proc. says “yes”
: T ZThREuy =, LKx:T:yZ,uu=uw, Ht:C
SHEtiuy=w, x:wy=u; ZFHt:C
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EQuALITY TYPES AND EQUIVALENCE
We consider the type former t = u (where t and u are arbitrary terms).

It is interpreted as:
- the unit type T if t and u are “equivalent”,

- the empty type L otherwise.

dec. proc. says “yes”
: T ZThREuy =, LKx:T:yZ,uu=uw, Ht:C
SHEtiuy=w, x:wy=u; ZFHt:C

Remark: cannot be complete since equivalence is undecidable.
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FIRST-ORDER QUANTIFICATION IS NOT ENOUGH

val rec add : nat = nat = nat =
fun nm { case n { Zero —» m | S[k] — S[add k m] } }
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FIRST-ORDER QUANTIFICATION IS NOT ENOUGH

val rec add : nat = nat = nat =
fun nm { case n { Zero —» m | S[k] — S[add k m] } }

val add Zero m : vm, add Zerom = m = {}
// Immediate by definition
val add n Zero : vn, add n Zero = n = {- ??? -}

// Nothing we can do

We need a form of typed quantification!
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DEPENDENT FUNCTIONS FOR TYPED QUANTIFICATION

val rec add n Zero : Vvnenat, add n Zero = n =
fun n {
case n {
Zero — {}
S[p] — add n Zero p
}
}
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DEPENDENT FUNCTIONS FOR TYPED QUANTIFICATION

val rec add n Zero : Vvnenat, add n Zero = n =
fun n {
case n {
Zero — {}
S[p] — add n Zero p
}

Remark: we may inspect the elements of the domain.
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val rec add n Zero : Vvnenat, add n Zero = n =
fun n {
case n {
Zero — {}
S[p] — add n Zero p
}
}

Remark: we may inspect the elements of the domain.

Nx:A;ZFt:B
' Z FAx.t: Vx€A.B
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DEPENDENT FUNCTIONS FOR TYPED QUANTIFICATION

val rec add n Zero : Vvnenat, add n Zero = n =
fun n {
case n {
Zero — {}
S[p] — add n Zero p
}
}

Remark: we may inspect the elements of the domain.

x:A;Z2FHt:B NZFt:¥xeAB T;Z2Fv:A
' Z FAx.t: Vx€A.B M=ZkFtv:Bx:=y]
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STRUCTURING PROOFS WITH DUMMY PROGRAMS

val rec add_n_Sm : Vn menat, add n S[m] = S[add n m] =
fun n m {
case n { Zero — {} | S[k] — add n Sm k m }
}
val rec add comm : Vn menat, add nm = add m n =
fun nm {
case n {

Zero — add _n_Zero m
S[k] — add n Sm m k; add comm k m

}

RODOLPHE LEPIGRE 9/ 40



PART II

FORMALISATION OF THE SYSTEM AND SEMANTICS
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REALIZABILITY MODEL

We build a model to prove that the language has the expected properties.
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We build a model to prove that the language has the expected properties.

To construct the model, we need to:

1) give the syntax of programs and types,

2) define the interpretation of types as sets of terms (uses reduction),
3) define adequate typing rules,

4) deduce termination, type safety and consistency.
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REALIZABILITY MODEL

We build a model to prove that the language has the expected properties.

To construct the model, we need to:

1) give the syntax of programs and types,

2) define the interpretation of types as sets of terms (uses reduction),
3) define adequate typing rules,

4) deduce termination, type safety and consistency.

Advantage: it is a very flexible approach.

RODOLPHE LEPIGRE
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CALL-BY-VALUE ABSTRACT MACHINE

Values (A,) Vv, w z= x| At [{(Li=vi), } | GV

Terms (A) tyuw z=vitu | vl [DHChi = t), ] | pet | [t
Stacks (1) m, & = ole|v.m| [tln (evaluation context)
Processes Pyq = txm
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CALL-BY-VALUE REDUCTION RELATION

{(l’i:vi)iel}'lk* T > Vk* Tt (k € I)

I*7 > t[x=vi*m (kel)

=)
o
*
ipal
Y
-
*
A
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SUCCESSFUL COMPUTATION AND OBSERVATIONAL EQUIVALENCE

The abstract machine may either:
- successfully compute a result (it converges),

- fail with a runtime error or never terminate (it diverges).
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- fail with a runtime error or never terminate (it diverges).

Definition: we write t x 7t |} iff t % 7t >* v x ¢ for some value v (t * 7t | otherwise).
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The abstract machine may either:
- successfully compute a result (it converges),

- fail with a runtime error or never terminate (it diverges).

Definition: we write t x 7t |} iff t % 7t >* v x ¢ for some value v (t * 7t | otherwise).

(Ax.x) {}x¢el (Ax.x x) (Axx x)*xef (Ax.t).lyxe

Definition: two terms are equivalent if they converge in the same contexts.

(=) = {(t,u) [V, txnt & ux ﬂll}
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SUCCESSFUL COMPUTATION AND OBSERVATIONAL EQUIVALENCE

The abstract machine may either:
- successfully compute a result (it converges),

- fail with a runtime error or never terminate (it diverges).

Definition: we write t x 7t |} iff t % 7t >* v x ¢ for some value v (t * 7t | otherwise).

(Ax.x) {}x¢el (Ax.x x) (Axx x)*xef (Ax.t).lyxe

Definition: two terms are equivalent if they converge in the same contexts.

(=) = {6, wIvn Ve, tpxnll & upxmlf
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TyYPES AS SETS OF CANONICAL VALUES

Definition: a type A is interpreted as a set of values [A] closed under (=).
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TyYPES AS SETS OF CANONICAL VALUES

Definition: a type A is interpreted as a set of values [A] closed under (=).

[{L: A LAR = {{112\)1;12:\12} |vie[Al A v, € [[Az]]}
[IC:A G A =[G [iell, 2} A velAd]
[vx.A] = N [AX:=0]]

® type

[3X.A] = q)Ltgpe[[/\[x = O]

[vx.A] = () [Ala=t]]

v value

[3x.A] = U [Ala:=t]]

v value
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MEMBERSHIP TYPES AND DEPENDENCY

We consider a new membership type t€A (with t a term, A a type).
- It is interpreted as [teA] = {v € [A] | t = v},

- and allows the introduction of dependency.
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MEMBERSHIP TYPES AND DEPENDENCY

We consider a new membership type t€A (with t a term, A a type).
- It is interpreted as [teA] = {v € [A] | t = v},

- and allows the introduction of dependency.

The dependent function type Vx€A.B
- is defined as Vx.(x€A = B),

- this is a form of relativised quantification scheme.
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SEMANTIC RESTRICTION TYPE AND EQUALITIES

We also consider a new restriction type A [ P:
- it is build using a type A and a “semantic predicate” P,
- [ATP] is equal to [A] if P is satisfied and to [ L] otherwise.

- We can use predicates like t = u, =P or P A Q.
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SEMANTIC RESTRICTION TYPE AND EQUALITIES

We also consider a new restriction type A [ P:
- it is build using a type A and a “semantic predicate” P,
- [ATP] is equal to [A] if P is satisfied and to [ L] otherwise.

- We can use predicates like t = u, =P or P A Q.

Remark: equality types t = u are encoded as T [ t=u.

Remark: refinement types {x € A | P} are encoded as Ix.(x €A [ P).
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INTERPRETATION OF THE FUNCTION TYPE

[A = B] = {Axw | Vve[A],wx:=v] € [B]}
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INTERPRETATION OF THE FUNCTION TYPE

[A = B] = {Ax.w | Vve[Al,wlx:=v] € [B]}

What about A-abstractions which bodies are terms?

We define a completion operation [A] +— AT

The set [A]"" contains terms “behaving” as values of [A].

Definition: we take [A = B] = {Ax.t | Vv e [A], tlx:=v] € [B]""}.
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POLE AND ORTHOGONALITY

The definition of [A]"" is parametrised by a set of processes 1L C AxIT.
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POLE AND ORTHOGONALITY

The definition of [A]"" is parametrised by a set of processes 1L C AxIT.
We require that p € I and q > p implies q € L.
Intuitively, 1 is a set of processes that “behave well”.
The set 1L = {p | pl} is a good choice.
[A] € {dPCA |vedDAVv=w = we D)

[A]Y = {meTl|VvelAl,vxmn e 1}

[AT™ = {te A|Vre[A]lY tsxme 1}
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VALUE RESTRICTION AND TYPING JUDGMENTS

Combining call-by-value and effects leads to soundness issues (well-known).
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- I'; = Ky v A for values only,
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Z F t: A for terms (including values).
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VALUE RESTRICTION AND TYPING JUDGMENTS

Combining call-by-value and effects leads to soundness issues (well-known)
Usual solution: “value restriction” on some typing rules.

This is encoded with two forms judgments:
- I'; = Ky v A for values only,
- T'; Z Ft: A for terms (including values).

[

'Valv:A
Fv:A

=
[;] [
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VALUE RESTRICTION AND TYPING JUDGMENTS

Combining call-by-value and effects leads to soundness issues (well-known).

Usual solution: “value restriction” on some typing rules

This is encoded with two forms judgments:
- =

K. v : A for values only,

- T'; Z Ft: A for terms (including values).
M ZRyv:A NzFt:A=B TI;ZFu:A
NZkFv:A NZkFtu:B
Nx:A;ZFHt:B
Tx:A; 2 hkygx: A N ZkyiAxt:A=B
RODOLPHE LEPIGRE
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ADEQUATE TYPING RULE

Theorem (adequacy lemma):
- if Ft:A is derivable then t € [A]",
- if k,; v : A is derivable then v € [A].
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ADEQUATE TYPING RULE

Theorem (adequacy lemma):
- if Ft:A is derivable then t € [A]",
- if k,; v : A is derivable then v € [A].

Proof by induction on the typing derivation.

We only need to check that our typing rules are “correct”.

KaVv:A

- is correct since [A] C [A]"™"
v

For example
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ADEQUACY OF FOR ALL INTRODUCTION

M Z2hkav:A Xer
I Zhkgv: VXA

22 [ 40
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Xhyv:iA
g V1 VXA
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ADEQUACY OF FOR ALL INTRODUCTION

Xhyv:iA
g V1 VXA

We suppose v € [A[X = ®]] for all d, and show v € [VX.A].
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ADEQUACY OF FOR ALL INTRODUCTION

X '7;11 v:iA
v VXA

We suppose v € [A[X = ®]] for all d, and show v € [VX.A].

This is immediate since [VX.A] = N, [AX:= ®]].
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This is immediate since [VX.A] = N, [AX:= ®]].
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ADEQUACY OF FOR ALL INTRODUCTION

XEgVv:A
EaVv:VX.A

We suppose v € [A[X = ®]] for all d, and show v € [VX.A].

This is immediate since [VX.A] = N, [AX:= ®]].

XkEt: A
Ft: VXA

We suppose t € [A[X:= ®]]* for all &, and show t € [VX.AJ™
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ADEQUACY OF FOR ALL INTRODUCTION

XEgVv:A
EaVv:VX.A

We suppose v € [A[X = ®]] for all d, and show v € [VX.A].

This is immediate since [VX.A] = N, [AX:= ®]].

XkEt: A
Ft: VXA

We suppose t € [A[X:= ®]]* for all &, and show t € [VX.AJ™

However we have M, [AX = O]]** € [¥X.AT™ = (ng [AX:= ®]]) .
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PROPERTIES OF THE SYSTEM

Theorem (normalisation):

t: A implies t * ¢ > v x ¢ for some value v.
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PROPERTIES OF THE SYSTEM

Theorem (normalisation):

t: A implies t * ¢ > v x ¢ for some value v.

Theorem (safety for simple datatypes):

t: A implies t * ¢ > v x ¢ for some value v : A.

Theorem (consistency):

there is no closed term t: L.

RODOLPHE LEPIGRE
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PART III

SEMANTICAL VALUE RESTRICTION
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DERIVED RULES FOR DEPENDENT FUNCTIONS

x:AFt:Bla:=x] Ft:VaeAB kKyv:A
Ka Ax.t : Vac€A.B Ftv:Bla:=v]
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DERIVED RULES FOR DEPENDENT FUNCTIONS

x:AFt:Bla:=x] Ft:VaeAB kKyv:A
Ka Ax.t : Vac€A.B Ftv:Bla:=v]

Ft:VacA.B Def BaVv:A .
Ft:Va.(aeA = B) “ g V:iveA
Ft:veA = Bla=v] I—v:ve/\é

Ftv:Bla=v] ‘

Value restriction breaks the compositionality of dependent functions.

// add n Zero : Vnenat, add n Zero = n

add _n_Zero (add Zero S[Zero]) : add (add Zero S[Zero]) Zero = add Zero S[Zero]
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SEMANTICAL VALUE RESTRICTION

Ft:VaeAB K ;v:A by Ft:VaeAB Fu:A Fu=wv

We replace
Ftv:Bla:=v] Ftu:Bla:=1u]
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SEMANTICAL VALUE RESTRICTION

Ft:VaeAB K ;v:A Ft:VaeAB Fu:A Fu=wv

We replace by
Ftv:Bla:=v] Ftu:Bla:=1u]
This requires changing —@ YA o FtiA Ft=v
RaVv:veEA Ft:teA
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SEMANTICAL VALUE RESTRICTION

Ft:VaeAB K ;v:A Ft:VaeAB Fu:A Fu=wv

We replace by
Ftv:Bla:=v] Ftu:Bla:=1u]
This requires changing —@ YA o FtiA Ft=v
RaVv:veEA Ft:teA

Can this rule be derived in the system?

Ft:A Ft=v_

Fv:A
RaVv:A c.
I;alv:veAT'
Fv:veA Ft=v_
Ft:tcA -
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BIORTHOGONAL COMPLETION CLOSED FOR VALUES

Everything goes down to having a rule H—A
RaVv:A
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BIORTHOGONAL COMPLETION CLOSED FOR VALUES

Fv:A
I;alv:A'
balv:A
Fv:A~

Everything goes down to having a rule

It should not be confused with

Semantically, this requires that v € [AT" implies v € [A].

The biorthogonal completion should not introduce new values.

The rule seems reasonable, but it is hard to justify semantically.
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THE NEW INSTRUCTION TRICK

We do not have v € [A]"" implies v € [A] in every realizability model.
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We do not have v ¢ [A] implies v ¢ [AT" in every realizability model.

We extend the system with a new term constructor 9,,, such that

dywxm>vxm iff v FEw.

Idea of the proof with L = {p | p{}:
- We assume v ¢ [A] and show v ¢ [A]""
- We need to find 7 € [A]" such that v * 7t 1.
We need to find 7t such that vt and Vw e [A], wxm|.

We can take 1 = [Ax.0, €.

vk [Ax.Oy e > A0,k v.e >0, ke

Wk A0, Je > Ax.d ¥ w.e >0, ke >wxel if we [A]
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WELL-DEFINED CONSTRUCTION OF EQUIVALENCE AND REDUCTION

Problem: the definitions of (>) and (=) are circular.
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WELL-DEFINED CONSTRUCTION OF EQUIVALENCE AND REDUCTION

Problem: the definitions of (>) and (=) are circular.
We need to rely on a stratified construction of the two relations.
(=) = (MU {(évyw*ﬂ,v*ﬂ) | 3j<i,v §éj w}
(=) = {(t, u) | Vj<i,vn,Vo, tc*nllj & uc*nﬂj}

We then take
=) = U and = = NE).

ieN ieN
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PART IV

LOCAL SUBTYPING AND CHOICE OPERATORS
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A SYNTAX-DIRECTED PRESENTATION
PML, is hard to implement for several reasons:

- it is a Curry-style language (quantifiers are not reflected in terms),

- many of its type constructors don't have “algorithmic contents”.

RODOLPHE LEPIGRE 31/ 40



A SYNTAX-DIRECTED PRESENTATION

PML, is hard to implement for several reasons:
- it is a Curry-style language (quantifiers are not reflected in terms),

- many of its type constructors don't have “algorithmic contents”.

MNzZFt:A ad¢FfV(;Z) ZkHt=v M ZkFt:VaA
I Zkt:VaA NZrkt:Ala=ul

RODOLPHE LEPIGRE 31/ 40



A SYNTAX-DIRECTED PRESENTATION

PML, is hard to implement for several reasons:
- it is a Curry-style language (quantifiers are not reflected in terms),

- many of its type constructors don't have “algorithmic contents”.

MNzZFt:A ad¢FfV(;Z) ZkHt=v M ZkFt:VaA
I Zkt:VaA NZrkt:Ala=ul

Solution: handle these connectives using local subtyping.

RODOLPHE LEPIGRE 31/ 40



A SYNTAX-DIRECTED PRESENTATION

PML, is hard to implement for several reasons:
- it is a Curry-style language (quantifiers are not reflected in terms),

- many of its type constructors don't have “algorithmic contents”.

MNzZFt:A ad¢FfV(;Z) ZkHt=v M ZkFt:VaA
I Zkt:VaA NZrkt:Ala=ul

Solution: handle these connectives using local subtyping.

We then obtain a type system with:
- one typing for each term (or value) constructor,

- one typing rule for each pair of type constructors (up to commutation).
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CHOICE OPERATORS AND LOCAL SUBTYPING

We replace free variables with “choice operators”:
- &, .4t ¢ B) denotes some v € [A] such that [t[x := a]] ¢ [B]*" ,
- and similar things are defined for types and other syntactic elements.

- Choice operators are interpreted using elements of the semantic domain.
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We replace free variables with “choice operators”:
- &, .4t ¢ B) denotes some v € [A] such that [t[x := a]] ¢ [B]*" ,
- and similar things are defined for types and other syntactic elements.

- Choice operators are interpreted using elements of the semantic domain.

We modify the system by:
- eliminating typing contexts (in favor of choice operators),
- introducing local subtyping judgments of the form = +t: A C B.
- They are interpreted as: “if =+t : A holds, then = F t : B also holds.”

Remark: choice operators may not be necessary, but they makes the semantics simpler.

Remark: = - A C B can be encoded as = ¢, . A(x ¢ B) : A C B.
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EXAMPLES OF SYNTAX-DIRECTED TYPING RULES

STEMMEt:A=BCC Ze  Alt¢B)#£0 I—t[x:zexeA(tﬁB)]:Bé
=FMt:C

i
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St B) £ ok txi=ecaltgB)]: B;$
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EXAMPLES OF SYNTAX-DIRECTED TYPING RULES

SHFM&Xt:A=BCC =

—

Ftix:=ecalt€B)]: B;\
ZkFAMt:C

ZheenltégB):ACC .
ZhecaltéB): C

ZHFt:A=B I—u:Aﬁ
ZFHtu:B ‘

[
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EXAMPLES OF SYNTAX-DIRECTED TYPING RULES

ZTHEMXtEt:A=BCC = I—t[x:zexeA(th)]:Bé
ZkFAMt:C

Sk ealtgB):ACC

Ax
ZhecaltéB): C
ZHFt:A=1B El—u:/\ﬁ
ZFtu:B ’
Zkv:iA EI—Ck[v]:[Ck:A]gB+v E}—v:{lk:/\;---}X
=+ CM:B i SVl A
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EXAMPLES OF SYNTAX-DIRECTED (LOCAL) SUBTYPING RULES

ZHt:AX=CCB, ZHt:ACBX:=ex(t¢B)] Zhv=t
ZFt:YXACB ZFt:ACVXB '
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EI—t:A[X::C]gBV ZHt:ACBX:=¢g(t€B)] ;I—v—tV
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EXAMPLES OF SYNTAX-DIRECTED (LOCAL) SUBTYPING RULES

[
T
<

|
-+
<

ZHt:AX=CICB, T ht:ACBX:=¢ex(t¢B)
' Zt:ACVYXB

ZHFt:VXACB

S, uy=u,Ft:ACB Ekvztr ZHFt:ACB ZhFu =u,
SHt:Alu=u,CB ' SHt:ACBlu= v
S, t=ubt:ACB Zkt=v  ZHt:ACB Zht=u EZbt=v
‘ ZHt:ACueB '

ZFt:ueACB
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EI—t:A[X::C]QBV ZHt:ACBX:=¢g(t€B)] ;}—v—tV
ZFt:YXACB Zt:ACVYXB '
S, uu=u, Ft:ACB Ekvzt( ZHFt:ACB ZhFu =u,

SHt:Aluy=u,CB ' SHt:ACBlu= v

Z,t=ukFt:ACB El—tzvE
Zht:ucACB ' ZhFt:ACucB '
= }_W:Ang] = l_tW:B]ng El_tEV:>

El—t:A]:>B]§A2:>BZ
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PART V

CycLIC PROOFS AND TERMINATION CHECKING
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GENERAL RECURSION AND FIXPOINT UNFOLDING

Recursive programs rely on a term @a.v (binding a term in a value).

= Fvla:=ean] :A(p

avim -  v[a:=pav]xm
® ? ZkF@av:A
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GENERAL RECURSION AND FIXPOINT UNFOLDING

Recursive programs rely on a term @a.v (binding a term in a value).

= Fvla:=ean] :A(p
ZkF@av:A

eavxm —» v[a:=e@av]xm

Problem: we need to work with infinite proofs.

We introduce a cyclic structure in our proofs. [V (Z Ft: Al

Va (ZFt:A) =+ t CA) o =g (t ¢ A)]mdm

Gen

(EFt:A)x =«] Va (ZHt:A)
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ORDINALS AND INDUCTIVE TYPES

= Ft:ACBX:=p X.B]
SFt:ACp X.B

K 00
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ORDINALS AND INDUCTIVE TYPES

ZEt:A CB[X:=pX.B]
ZHt:ACuXB

K 00
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ORDINALS AND INDUCTIVE TYPES

ZFt:ACB[X:=pX.B]
ZHt:ACuXB

K 00

1

Ft:ACBX=puXB] Ztvuv<rt
Z=Ft:ACuX.B

r

;1> 0t AX = peax=pxaApXAICB ZEv=t
v;ZFt:uX.ACB

H
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ExAMPLE OF CyCLIC PROOF

Let us consider the “map” function: @m.AfAL[L|[]—=[][x::l—=fx::mfl].

It can be given either of the types:
- WX.Y(X = Y) = List(X) = List(X),
- Va.¥X.Y(X = Y) = List(x, X) = List(X),
- Va.VX.Y(X =Y) = List(«, X) = List(x, X).
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CONCLUSION
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FUTURE WORK

1) Practical issues (work in progress):
- Composing programs that are proved terminating.

- Extensible records and variant types (inference).

2) Toward a practical language:

- Compiler using type information for optimisations.

- Built-in types (int64, float) with their formal specification.

3) Theoretical questions:
- Can we handle more side-effects? (mutable cells, arrays)
- What can we realise with (variations of) 8,,,?
- Can we extend the system with quotient types?

- Can we formalise mathematics in the system?
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