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PROGRAMMING LANGUAGE, WITH PROVING FEATURES

An ML-like programming language:

General recursion, records and variants

Call-by-value evaluation

Effects (control operators)

Curry-style language
Subtyping
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PROGRAMMING LANGUAGE, WITH PROVING FEATURES

ML-like programming language:
General recursion, records and variants
Call-by-value evaluation

Effects (control operators)

Curry-style language

Subtyping

enriched type system for program proving:
Higher-order layer with programs as individuals
Equality types t = u (observational equivalence)
Dependent function type (typed quantification)

Termination checking (only required for proofs)
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EXAMPLE OF PROGRAM AND PROOF

type rec nat = [Z ; S of nat]
val rec add : nat = nat = nat = funnm —
casen { Z[ 1] - m | S[k] — S[add k m] }
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EXAMPLE OF PROGRAM AND PROOF

type rec nat = [Z ; S of nat]
val rec add : nat = nat = nat = funnm —
casen { Z[ 1] - m | S[k] — S[add k m] }

val add Zn : vn:¢v , add Zn = n = {}

val rec add n Z : Vnenat, add n Z n="Ffunn —

case n {
Z[ 1 — {}
S[p] — add n Zp

2 /12



DETAILED PROOF USING (HIGHER-ORDER) MACROS

def tac deduce<f:o> : v = ({} : f)
def tac show<f:o, p:t>: 7= (p : f)
def tac gqed : v = {}
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DETAILED PROOF USING (HIGHER-ORDER) MACROS

def tac deduce<f:o> : t = ({} : f)
def tac_show<f:o, p:t> : v = (p : f)
def tac qed : © = {}

val rec add n Z : Vnenat, add n Z = n = fun n —
case n {
Z[ ] — deduce add Z Z = Z; qged
S[k] — show add k Z = k using add n Z k;
deduce S[add k Z] = SI[k];
deduce add S[k] Z = S[k]; ged
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FINE-GRAINED SPECIFICATION USING EQUIVALENCE

val rec is even : nat = bool = fun n —
case n {
Z[ ] — true

S[p] — case p { Z[ ] — false | S[p] — is even p }
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FINE-GRAINED SPECIFICATION USING EQUIVALENCE

val rec is even : nat = bool = fun n —
case n {
Z[ ] — true

S[p] — case p { Z[ ] — false | S[p] — is even p }
type even nat = Jv:., (venat | is even v = true)
val rec double : nat = even_nat = fun n —
case n {

Z[[ 1 —» Z
S[p] — let r : even nat = double p in S[S[r]]
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MORE EXAMPLES OF SPECIFICATIONS

type rec list<a> = [Nil ; Cons of {hd : a ; tl : list}]

// Vectors (as a subtype of lists)
val length : va:o, list<a> = nat = {- ... -}

type vec<a:o, s:t> = Jl:., lelist<a> | length 1 = s
// Sorted lists (as a subtype of lists)

val increasing : list<nat> = bool = {- ... -}

type sorted list = 3l:., lelist<nat> | increasing 1 = true

5/ 12



CLASSICAL REALISABILITY SEMANTICS
Realisability is about computation:

- Call-by-value Krivine Machine (for classical logic)

- States of the form t * 7t with a reduction relation (>)
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CLASSICAL REALISABILITY SEMANTICS

Realisability is about computation:
- Call-by-value Krivine Machine (for classical logic)

- States of the form t * 7t with a reduction relation (>)

We also require a notion of observational equivalence:
- We write t x |l for 3v, t* 7w >* v x ¢ (successful computation)
- (=) is defined as {(t, w) | Vm,Vp,tpx ] & up x|}

A type A is interpreted using two sets (in fact three):
- The set of its “canonical” values [A]
- A set of terms [A]"" defined as a form of completion of [A]

- Closure under (=) is required on those sets
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INTERPRETATION OF THE (UsUAL) TYPES

[tc:ay, ] = {{ti=v), I viel, v e [Ad)
[ici: A0, ] = Uil (Gl | v € TAD)
[A =Bl = {Ax.t|vvelAl, tix:=v] € [BI**)
[Vx' Al = Ngepg [AK =P
[3x° Al = Ugpepq AKX =
[ XAl = U _ (X = [AD (@)

[v.XAl = n (X = [AD"(A)
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MEMBERSHIP TYPE AND DEPENDENT FUNCTIONS

A new membership type t€A:
- Built using a term t and a type A
- Denotes the equivalence class of t in A
- Interpreted as [teA] = {v e [A] |t = v}
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MEMBERSHIP TYPE AND DEPENDENT FUNCTIONS

A new membership type t€A:
- Built using a term t and a type A
- Denotes the equivalence class of t in A
- Interpreted as [teA] = {v e [A] |t = v}

Only way to link the “word of terms” and the “world of types”
The dependent function type is encoded using membership:

- Yae€A, B is defined as Va.(a€A = B)

- Related to the relativised quantification scheme
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SEMANTIC RESTRICTION AND SUBSETS

A new restriction type A [ P:
- Built using a type A and a “semantic predicate” P
- [ATP] is equal to [A] if P is satisfied and to [VX.X] otherwise
- Examples of predicates: t = u, k # 0, A C B, =P, PAQ
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SEMANTIC RESTRICTION AND SUBSETS

A new restriction type A [ P:
- Built using a type A and a “semantic predicate” P
- [ATP] is equal to [A] if P is satisfied and to [VX.X] otherwise
- Examples of predicates: t = u, k # 0, A C B, =P, PAQ

The equality type t = u is encoded as {}[t=u
Restriction and membership can be combined into a subset type:
- It is possible to define {x€A | P} as Ix'xcA [P

- Note that {x€A | P} is always a subtype of A

- A similar constructor can be used in nuPRL
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INTERNAL TOTALITY PROOFS

val rec add total : vn menat, Iv:it , add nm = v =funnm —
case n {
Z[ ] — qed
S[k] — use add total k m; qed
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INTERNAL TOTALITY PROOFS

val rec add total : vn menat, Iv:it , add nm = v =funnm —
case n {
Z[ ] — qed
S[k] — use add total k m; qed
}

val rec add asso : vn m penat, add n (add m p) = add (add nm) p =
fun nmp —
use add_total m p;
case n {
Z[ 1 — ged
S[k] — use add total k m; use add asso k m p; qed
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SUBTYPING AND TERMINATION

Subtyping and termination checking are handled using circular proofs:
- Types (and judgments) are parametrised by ordinals sizes
- A proof forms a directed acyclic graph of atomic proof blocks

- The edges carry size relations between matching ordinals
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SUBTYPING AND TERMINATION

Subtyping and termination checking are handled using circular proofs:
- Types (and judgments) are parametrised by ordinals sizes
- A proof forms a directed acyclic graph of atomic proof blocks

- The edges carry size relations between matching ordinals

We use an external check to show that typing derivations are well-founded

A semantic proof by induction on the typing derivation gives normalisation
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